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Abstract

From building a new piece of furniture to replacing a lightbulb, people must often figure out how to
assemble an object from its parts. Although these physical assembly problems take on many different
forms, they also pose common challenges. Chief among these is the question of how to break a complex
problem down into subproblems that are easier to solve. What principles determine why some strategies
for decomposing a problem are favored over others? Here, we investigate the decisions that people
make when considering different visual subgoals in the context of attempting to build a series of virtual
block towers. We hypothesized that people favor subgoals achieving a balance between how much
progress the subgoals would help achieve toward the final goal and how effortful they would be to solve.
We tested this hypothesis by defining several computational models of planning and subgoal selection,
then evaluating how well these models predicted human planning and subgoal selection behavior on the
same problems. Our results suggest that participants rapidly differentiated the computational costs of
otherwise similarly ambitious subgoals, and used these judgments to drive subgoal selection. Moreover,
our findings are consistent with the possibility that participants were not only sensitive to the immediate
computational costs associated with solving the very next subgoal, but also future costs that might
be incurred when attempting the rest of the problem. Taken together, these results contribute to our
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understanding of how humans make efficient use of cognitive resources to solve complex, grounded
planning problems.

Keywords: Planning; Problem solving; Physical reasoning; Task decomposition; Decision-making

1. Introduction

Building new things is a fundamental part of what it means to be human, from smaller
artifacts including tools and furniture, to larger structures including houses, cities, and space
stations (Hunt et al., 2021). Even in everyday contexts where an individual might be working
alone to build something, such as a new bookshelf, there are substantial challenges to over-
come. In particular, they have to reason about the dimensions of the planks and how they
fit together (Battaglia et al., 2013; Hamrick et al., 2016; Ludwin-Peery et al., 2021; Smith
et al., 2018; Ullman et al., 2017). The more complex the artifact one is seeking to build, the
more interactions between parts have to be considered. How do humans manage to routinely
meet such challenges in their everyday lives (Callaway et al., 2022; Gershman et al., 2015;
Griffiths, 2020)?

One simple way people might solve such assembly problems is by focusing on imme-
diate progress: selecting actions that appear to make the most progress toward the overall
goal right away. This approach has been well-documented in both real-world and controlled
experimental settings (Brooks, 1991; Geffner, 2013; Mattar & Lengyel, 2022; Simon, 1956).
For example, when asked to build a block tower by stacking toy blocks, someone using this
approach would place each block wherever it makes the most immediate progress, without
considering how their current choices affect later parts of the tower. Focusing on immedi-
ate progress can be computationally inexpensive and effective, particularly when problems
can be solved incrementally and mistakes can be easily corrected. However, this approach
becomes less viable in domains where mistakes are costly or irreversible. Consider building a
tower out of blocks: the way the foundation is built determines whether the completed tower
will be stable, but these dependencies might not be apparent when first placing blocks at the
base.

Alternatively, people might adopt a more deliberative approach, expending cognitive effort
to plan ahead. Classically, planning is formulated as search over the space of hypothetical
future states, accessed by performing a sequence of actions (Fikes & Nilsson, 1971; Kirsh,
2009; Newell & Simon, 1972). However, the computational cost of planning grows exponen-
tially as a function of the size of that search space, with the consequence that many everyday
problems seem intractable when searching over sequences of actions alone (Bellman, 1957;
van Opheusden et al., 2017). One influential strategy for make planning on complex problems
more tractable is hierarchical planning: decomposing the full problem into a sequence of sub-
goals that are individually easier to plan for and achieve, thereby reducing the total cost of
planning (Correa, Ho, Callaway, Daw, & Griffiths, 2023; Huys et al., 2015; Jinnai et al., 2019;
Maisto et al., 2015; Sacerdoti, 1974). For example, when constructing a tower out of blocks,
a hierarchical planner might first break the problem down into subgoals that entail “building
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the base,” then “constructing the middle portion,” then “completing the top.” Only after deter-
mining this sequence of subgoals would they proceed to plan the specific block placements
needed to achieve each one. As such, one shortcoming of typical implementations of hier-
archical planning is that they do not consider the computational cost of generating possible
problem decompositions in the first place.

An intermediate possibility that strikes a balance between the benefits of taking immedi-
ate action and the costs of planning is one where people set only one or a few near-term
subgoals to achieve before considering how to solve the remainder of the problem (Agre,
1988; Botvinick, 2012; Hayes-Roth & Hayes-Roth, 1979; Patalano & Seifert, 1997). In other
words, only part of the problem might be within scope at any point in time, such that decisions
about how to decompose a problem are interleaved with actions to solve parts of it, rather than
being made in their entirety before taking the first action. For example, when constructing a
tower out of blocks, rather than planning the entire sequence of actions to take upfront, a per-
son might instead first focus on constructing the base, then finish doing so before considering
which section of the tower to construct next.

Here, we investigate to what degree these various accounts might explain how people
approach physical assembly problems. Specifically, we aim to understand how people decide
among different possible ways of decomposing these problems to make them more tractable.
Toward this end, we conducted a series of experiments wherein participants were presented
with a series of block towers to reconstruct from a fixed inventory of blocks. In this virtual
environment, participants were unable to move a block once placed. In real-world physical
construction settings, undoing an action is often costly, making it more valuable to plan ahead.
For instance, one cannot undrill a hole. Solving such block tower problems poses nontrivial
challenges for planning, as has been demonstrated in prior work using this task to explore
variation in reasoning about physical assembly in humans (Cortesa et al., 2018; Dietz et al.,
2019; McCarthy et al., 2020) and artificial agents (Bapst et al., 2019; Sussman, 1975). To
investigate which factors people consider when deciding which part of the block tower prob-
lem to consider next, we gave participants multiple possible subgoals to choose from and
compared their choices to the predictions of various computational models instantiating dif-
ferent subgoal selection strategies.

2. Measuring and modeling human planning costs

The goal of our first study was to measure how much time people needed to formulate
plans when presented with a physical assembly problem, and to validate an influential com-
putational model of those planning costs in this task setting. Toward this end, we used a block
tower assembly task wherein participants were presented with a series of block towers, and
their goal was to exactly reconstruct them by executing a valid sequence of block placements
(McCarthy et al. (2020); Fig. 1a). Similar task paradigms have been used to study planning
and physical reasoning in both artificial agents (Bapst et al., 2019; Bear et al., 2021; Sussman,
1975) and humans (Cortesa et al., 2018, 2017; Dietz et al., 2019; McCarthy et al., 2020, 2023;
Smithwick & Kirsh, 2015).
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(a) (b)

Fig. 1. (a) On each trial, participants were presented with both a block tower and a target subgoal, defined by a
rectangular aperture containing part of the tower. In the planning phase of each trial, participants were instructed
to take as much time as they needed to come up with a complete plan for solving just that subgoal. Next, in the
subgoal completion phase, participants executed the plan under time constraints that made it difficult to perform
additional planning. (b) Scatterplot indicating the relationship between the number of states explored by the Best
First Search algorithm (x-axis) and the amount of time taken by participants to devise a plan for each subgoal
(y-axis). Each dot corresponds to one subgoal embedded within a block tower problem. The predictions of a linear
regression model are also shown, with 95% confidence bands.

2.1. Method

2.1.1. Participants
Eighty-six participants (51 male, MAge = 38.46 years) were recruited from Prolific and

paid a minimum of $14 per hour. We excluded six participants who navigated away from the
study webpage more than five times. In this and all subsequent studies, participants provided
informed consent in accordance with the cognizant IRB.

2.1.2. Stimuli
We sought to identify a set of block towers that would enable investigation of how people

make plans to complete various subgoals nested within each tower. Toward this end, we pro-
cedurally generated 128 stable block tower shapes of varying sizes. From these towers, we
initially defined a large set of “initial” subgoals—that is, subgoals that could be built without
having to build any other part of the tower first. For each tower, we then generated four pairs
of subgoals, yielding a total of 512 pairs of subgoals, where both members of each pair were
equated on size, measured by their surface area. Matching the size of subgoals ensured that
the choice between subgoals in a pair would be due to differences in how costly it might
be to formulate a plan, rather than how much progress toward completing the block tower it
would yield.

We used a search algorithm known as Best First Search to estimate how costly each sub-
goal might be to develop a plan for, as measured in terms of the number of states considered
by the search algorithm before a solution is found. We refer to the subgoal with the lower
predicted cost as the easier one in each pair, and the other one as the harder subgoal. To
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analyze behavior across different subgoal sizes, we divided the subgoal pairs into three size
categories: small, medium, and large. Within each size category, we identified the 32 sub-
goal pairs with the largest difference in planning cost between the easier and harder subgoal.
This selection process yielded our final stimulus set of 96 subgoal pairs (192 total subgoals),
spanning different sizes and difficulty levels.

2.1.3. Task procedure
At the beginning of each session, participants were familiarized with the block tower

assembly task by completing a tutorial phase in which they first built a small practice tower
without the use of subgoals, then again, but with a predetermined sequence of subgoals. After
completing the tutorial, each participant was then presented with a series of 24 subgoals to
complete, corresponding to 12 subgoal pairs sampled at random from the full set of 96 subgoal
pairs. These 24 subgoals were presented in a randomized sequence, and participants were not
told that they would be presented multiple subgoals related to the same block tower problem.

On each trial, participants were presented with a target tower shown as a silhouette, with a
specific subgoal region highlighted. Their goal was to solve the presented subgoal by placing
blocks to exactly fill the highlighted region of the tower, with no blocks sticking out and no
gaps left. The building area was divided into grid cells, with each block taking up one or more
cells. Below the building area, participants were presented with an inventory of rectangular
blocks that they could use to build the tower. The inventory contained a 1x2 block, a 2x1
block, a 1x3 block, and a 3x1 block (Fig. 1). Each type of block could be used as often as
needed. Each block shape could be picked up by clicking on it, then placed within the building
area by clicking again. Blocks could only be placed on top of other blocks, or on the ground
if there were no other blocks, but never below blocks that had already been placed in the
building area.

Visual subgoals were defined as rectangular regions of the building area of any dimen-
sions. When potential visual subgoals were shown to participants, they were displayed as a
translucent overlay over the target tower, with the rest of the tower still visible. When solv-
ing a subgoal, participants were tasked with accurately recreating just the part of the tower
contained within the highlighted subgoal region.

This task environment simulated physical dynamics, including the influence of gravity and
collisions between blocks, using the Matter.js physics engine (Brummitt, 2014). If blocks
were arranged in an unstable configuration, they would fall and the tower had to be rebuilt
from scratch. Due to these physical constraints, participants needed to choose block place-
ments such that at each step throughout the building phase, their construction was stable.
In addition, we did not allow blocks to be repositioned or removed once placed. This put
pressure on participants to plan ahead: some block placements could make the rest of the
tower impossible to complete, even if those consequences were not immediately obvious. For
instance, certain block placements could create a single-cell wide gap elsewhere in the tower
that could not be filled with any of the available block shapes.

The rationale for presenting matched pairs of subgoals in each session was to make con-
trolled comparisons between subgoals that were otherwise similar, except for the expected
computational cost of solving them. So, we prompted participants to solve these subgoals
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under conditions that enabled us to estimate the computational cost that people incurred to
devise a solution. We allowed participants to take as long as they needed to come up with their
plan for solving a subgoal, but gave them very limited time to execute their plan. We then used
the amount of time participants took before deciding to act as a proxy for how costly that sub-
goal was to solve. Specifically, each trial was subdivided into two phases: a planning phase
and a building phase (Fig. 1a). During the planning phase, participants could take as much
time as they needed to come up with a plan to achieve the subgoal, but were unable to move
any blocks. Once they were ready, they clicked a button to advance to the building phase. In
the building phase, participants had up to 4 s to select and place their first block, and up to 4
s between block placements until they completed the subgoal. If they failed to place the next
block within the allotted time, or if the tower became unstable and fell over, the building envi-
ronment reset and participants had to attempt the subgoal again from scratch. In addition to
time pressure, we also gave participants an additional incentive to formulate plans that were
likely to be successful. Participants were provided with an initial endowment of 100 points.
Each time there was a reset, some of these points would be deducted, which was framed as
undesirable. However, participants were neither rewarded nor penalized for the number of
points they had retained at the end of the experiment.

2.1.4. Computational model of planning costs
Following prior work, we modeled the process of solving a subgoal as search over a graph

of potential actions and their resulting states of the world (Geffner, 2013; Newell & Simon,
1972). A subgoal is completed when a sequence of actions is found that leads from the initial
state of the world to a state in which the subgoal is completed. Under this formulation, we
approximate the relative cost of completing different subgoals by estimating the number of
states that a given search algorithm needs to consider to solve them. In this task setting, we
model action-level planning as search over the space of potential sequences of block place-
ments that yield stable configurations at each step.

We focus on Best First Search (Dechter & Pearl, 1985; Hart et al., 1968) as our primary
candidate for modeling this search process because it has previously shown promise in mod-
eling human problem solving (van Opheusden et al., 2017). Best First Search is a heuristic
search algorithm that, like its close relative, the A* algorithm, maintains a list of states to
visit, ordered by how promising they are according to a heuristic. On each iteration, Best First
Search takes the most promising state from the list of states to explore. If it is a goal state,
the algorithm has found a solution and terminates. If not, it adds the states that are reachable
by a single action from the current state to the list and then repeats. Ties between equally
promising states are broken randomly, which means that Best First Search is not deterministic
and can yield different plans on the same problem. To account for this indeterminacy, we ran
Best First Search 10 times and averaged the results. Here, we use the percentage of the tower
completed as the heuristic criterion, meaning that the most promising state is the one in which
the largest fraction of the tower’s target shape is covered. Under this criterion, Best First
Search is biased toward exploring states where larger blocks are placed and to find solutions
that require fewer block placements overall. There was no explicit stopping criterion defined

 15516709, 2025, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.70135 by Stanford U

niversity, W
iley O

nline L
ibrary on [12/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



F. J. Binder et al. / Cognitive Science 49 (2025) 7 of 26

in our implementation of Best First Search. Instead, the algorithm continues to explore until
either a solution is found, or it determines that no solution to the subgoal is possible.

Running Best First Search produces two outputs: (1) a sequence of actions that will com-
plete the (sub)goal and (2) the computational cost incurred to arrive at that solution, measured
as the number of states that Best First Search explores before finding that solution.

2.2. Results

Overall, we found that participants succeeded in solving these subgoals in a reasonable
amount of time. Participants took 8.95 s on average (95% CI: [8.55, 9.34]) to come up with
their plan on their first attempt to solve a subgoal. And they were able to succeed within 1.32
attempts (95% CI: [1.28, 1.37]); most often participants solved subgoals on their first try.
These results suggest that the subgoals were on average of moderate difficulty: challenging
enough to require some thought but not so complex as to be unsolvable within a reason-
able timeframe.

We next sought to assess how well the computational cost, as measured by Best First
Search, predicted the planning times that our human participants needed for each subgoal
(Fig. 1b). We found that the subgoal that Best First Search identified as costlier was also the
subgoal that human participants took longer to solve 66.32% (95% CI:[63.29%, 69.30%])
of the time (Fig. 2). To obtain a more graded measure of how well Best First Search could
explain human planning times, we also estimated the degree to which variability in compu-
tational cost across subgoals estimated by Best First Search could predict variation in human
planning times. We estimated the strength of this relationship using the Spearman rank corre-
lation coefficient, which captures the degree to which the rank orderings over subgoals agree
with one another, without making strong commitments to the functional form of the relation-
ship between these two variables (i.e., linearity). This analysis revealed a strong and reliable
correlation (Spearman’s ρ(188) = 0.56, bootstrapped 95% CI: [0.50, 0.67], p < .001), sup-
porting the use of Best First Search as a proxy for the computational costs that are relevant to
how humans approach block tower assembly problems.

We also evaluated several alternative methods for approximating the computational cost
of a subgoal. First, we considered Breadth First Search (Cormen, 2009), which is a simple
planning algorithm that considers all possible sequences of actions in order of their length.
It is guaranteed to find the shortest sequence of actions leading to the goal. Since Breadth
First Search searches the space indiscriminately, it in practice requires exploring many states
to find a solution. While Breadth First Search accounts for some variation in human plan-
ning time, it explains less variation than Best First Search (Spearman’s ρ(188) = 0.35, 95%
CI: [0.23, 0.47], p < .001). Next, we also considered heuristic features of these subgoals that
might conceivably be related to their difficulty, including their size, aspect ratio, number and
location of “holes” (i.e., parts of the subgoals that should not be covered by a block), and
total area of the tower that consist of holes. We then fit a multiple regression model predict-
ing human planning times from this full set of heuristic features, and found that this model
was moderately predictive of human planning time (adjusted R2 = .37), with the number of
holes being most predictive among them (β = 7010.97, p < .001). Critically, augmenting
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Fig. 2. In a first behavioral experiment, participants were presented with a series of subgoals to solve. Unbeknownst
to participants, these subgoals were paired such that both members of each pair were defined over the same tower
and had the same surface area, but one was predicted by Best First Search (BFS) to be less costly (Easier) and the
other to be costlier (Harder). Left: Relationship between the average amount of time participants needed to plan
the harder (y-axis) and easier (x-axis) subgoal in each pair. Each dot represents a single subgoal pair, with pairs
used in a subsequent subgoal selection experiment rendered in beige. Right: Example subgoal pairs. The first two
examples represent cases where the predictions of BFS qualitatively match measured human planning times. The
left subgoal of the shown pairs is predicted by BFS to be easier to solve; the mean human planning time for each
subgoal is inset. The third example represents a case where the predictions of BFS diverged from human planning
times.

this heuristic model with the predictions from Best First Search led to gains in explained
variance (χ2(1) = 22.54, p < .001). Conversely, augmenting the Best First Search model
with heuristic features also led to significant gains in explained variance (χ2(6) = 46.77,
p < .001), indicating that both algorithmic search processes and heuristic shortcuts contribute
independently to explaining human planning behavior. Taken together, these results validate
the use of Best First Search to approximate the computational costs of subgoals in this prob-
lem domain, while also demonstrating that humans employ additional strategies not fully
captured by the search algorithm alone.

3. Modeling the consequences of different subgoaling strategies on planning costs and
performance

Having validated the use of the Best First Search algorithm to estimate the computational
cost of solving individual subgoals, our next goal was to formally define a set of hypotheti-
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cal strategies that people might adopt to select subgoals when solving block tower assembly
problems: No Subgoals, Full Decomposition, Myopic, and Lookahead. Each of these strate-
gies offers a different way of balancing the tradeoff between the cost of solving the chosen
subgoal, the cost required to make this choice in the first place, and the risk of choosing a
poor subgoal and getting stuck. We then tested how well each of these strategies explains
how people select subgoals.

3.1. Approach

We modeled the selection of subgoals as a resource-rational problem. Resource-rational
approaches aim to understand human behavior by assuming that people make optimal use
of their limited cognitive resources (Callaway et al., 2022; Griffiths et al., 2015). These
approaches acknowledge that while humans may not achieve globally optimal solutions, they
can be remarkably efficient at finding good solutions given cognitive constraints, including
limited-capacity working memory and attention. In our setting, subgoals are chosen to max-
imize task performance while minimizing cognitive costs—making the most efficient use
of the limited cognitive resources available for planning. In particular, subgoals are cho-
sen to minimize the cognitive cost of finding a solution to the whole problem given the
subgoals.

3.1.1. Defining subgoals
Formulating a plan to solve an entire block tower problem without first identifying sub-

goals can be computationally infeasible on problems requiring many actions to complete.
Planning can typically be made more tractable by breaking the problems into subgoals. But,
given the aim of reducing the action-planning cost for the entire problem, how should the
problem be decomposed into subgoals? Assuming that we only care about solving the prob-
lem (leaving other considerations such as cost of building materials aside), we want to find a
decomposition of the problem into a sequence of subgoals such that the sequence of subgoals
jointly completes the problem and minimizes the sum of planning costs across the subgoals
in the sequence.

We defined the utility of a subgoal g to be Ug = Pg − λ ∗ Cg, where Pg is the proportion
of the entire problem that the subgoal solves, Cg is the planning cost of solving that subgoal,
and λ is the parameter that governs the tradeoff between making rapid progress and avoiding
planning costs. When λ = 0, subgoals are chosen solely based on progress made, while high
values of λ lead to choosing subgoals that are very easy to plan. The utility of a sequence of
subgoals is the sum of the utilities of its constituent subgoals.

Subgoals in our account were defined visually as rectangular regions of the building area.
Completing a subgoal meant completing the part of the tower that was covered by that rect-
angular region. This differs importantly from defining subgoals as specific target states of the
environment. While target states work well for simple tasks like navigation (where they corre-
spond to being in a certain location), they are poorly suited for physical assembly. In complex
state spaces like physical assembly, there are too many potential target states to effectively
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(a) (b)

Fig. 3. (a) Three strategies for subgoal selection during physical assembly: Myopic (at each turn, only consider
the next subgoal), Lookahead (at each turn, also consider the subgoal after the one currently being considered),
and Full Decomposition (break down the entire problem in advance). An example planning graph is shown on
the right. (b) The success rate and planning cost for the three strategies. The success rate reflects the proportion
of towers that could be perfectly reconstructed under a specific strategy. The planning cost reflects how costly
each subgoal is to plan under the subgoals identified under that strategy. For the Myopic and Lookahead strategies,
the relative weight assigned to the value of progress and the cost of planning is set by a weight parameter, λ. The
colored discs represent results for λ = 0.01. The associated curves represent results for other values of λ, indicated
by the values adjacent to each curve. Error bars represent bootstrapped 95% confidence intervals.

identify good subgoals. The state of a physical assembly task includes the precise location
and orientation of each block—determining these details is the core challenge of the prob-
lem itself. By defining subgoals visually, the planner can abstract away from specific block
arrangements and focus on the higher-level task of subgoal decomposition. While the rectan-
gular constraint excluded many potential subgoals, this limitation may have provided a useful
bias toward valuable subgoals in many assembly scenarios.

In order to make the problem tractable, only sensible subgoals were included. No potential
subgoals smaller than the smallest piece (two cells) or larger than 18 cells were allowed. No
free floating subgoals (which would be impossible to build) were permitted. Subgoals were
not allowed to have empty space on their sides.

3.1.2. Defining subgoal selection strategies
To investigate why one subgoal might be preferable to another at any given point in time, we

formalized three general approaches to subgoal selection (Fig. 3a) that vary in how much they
account for the rest of the problem: not at all (Myopic), partially (Lookahead), and completely
(Full Decomposition).
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F. J. Binder et al. / Cognitive Science 49 (2025) 11 of 26

3.1.2.1. Myopic strategy: The Myopic strategy only considers the most ideal next sub-
goal g∗

1:

Myopic: g∗
1 = argmax

g1

(Ug1 )

The Myopic strategy is the simplest of the three. Under this strategy, only the progress
achieved by completing the current subgoal and the expected cognitive costs of solving it
matter. As such, the Myopic strategy is “greedy” in the sense that it will favor more ambitious
subgoals to solve next (i.e., Pg is large), so long as they are not too difficult (i.e., Cg is not too
large). Once the current subgoal is completed, the subgoal selection process is repeated for
the next subgoal and so on. Because the Myopic strategy only considers the current subgoal
at each time, it can favor decisions that lead to “dead-ends”: present commitments that make
the rest of the problem more difficult or impossible to solve.

3.1.2.2. Lookahead strategy: The Lookahead strategy considers the next d subgoals in
sequence:

Lookahead: g∗
1 = argmax

g1

(
maxg2,...,gd

(
d∑

i=1

Ugi

))

This strategy considers the rest of the problem beyond the current subgoal to a limited degree.
Specifically, it makes a decision about the current subgoal such that the subsequent d sub-
goals also achieve meaningful progress while remaining tractable. Using Lookahead gener-
ally requires more effort to choose subgoals than the Myopic strategy, but could reduce the
risk of dead-ends. Here, we set d = 2, meaning that the strategy considers the current and
the following subgoal. As the number of potential sequences of subgoals grows exponentially
with d , considering longer sequences of subgoals at every turn quickly becomes computation-
ally infeasible. At d = 2, the Lookahead strategy prevents the choice of a subgoal that would
lock in an immediate dead-end. At high d , this strategy prevents subgoal choices that lead to
dead-ends many subgoals into the future.

3.1.2.3. Full Decomposition strategy: The Full Decomposition strategy considers all
possible complete decompositions of the problem into a sequence of subgoals (g∗

1, . . . , g∗
n)

that completes the tower, and selects the entire sequence that minimizes the total planning
cost1:

Full Decomposition: (g∗
1, . . . , g∗

n) = argmin
(g1,...,gn )

(
n∑

i=1

Cgi

)

where (g1, . . . , gn) represents any possible sequence of subgoals that completes the tower,
from the first subgoal g1 to the last subgoal gn. The Full Decomposition strategy is guaranteed
to minimize the sum of the planning costs associated with solving each of the subgoals in the
winning sequence, at the cost of requiring exhaustive search over the potentially very large set
of all possible subgoal sequences to identify the optimal one. To make this computationally
tractable, we limited sequences to a maximum length of three subgoals, as exhaustive search
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12 of 26 F. J. Binder et al. / Cognitive Science 49 (2025)

over longer sequences was computationally infeasible. Unlike the other two strategies, the
Full Decomposition strategy only needs to be executed once, as it yields a complete subgoal
sequence rather than a single subgoal. As such, no parameter λ is needed to balance the
tradeoff between progress and planning cost.

3.1.3. Relationship to other models of task decomposition
This modeling approach extends recently proposed models of resource-rational task

decomposition (Correa et al., 2023). Correa et al. (2023)’s framework proposes that peo-
ple decompose tasks to minimize the overall cost of planning while maintaining task per-
formance. It consists of three nested levels of optimization: (1) action-level planning (to
select concrete actions to accomplish a subgoal); (2) subgoal-level planning (which constructs
sequences of subgoals that maximize reward while minimizing computational cost); and (3)
task decomposition (which selects subgoals based on their value at the subgoal level). Given
a set of potential subgoals, this framework specifies how an idealized agent should choose a
hierarchical structure that balances task performance with planning costs.

However, one limitation of the formulation in Correa et al. (2023) is that it requires the
planner to commit upfront to a sequence of subgoals that completes the entire task. The cur-
rent modeling approach overcomes that limitation by allowing for incremental selection and
building of individual subgoals, which enables modeling of planners that look only a few
steps ahead rather than ones that decompose the entire problem in advance. While such incre-
mentality might not have been necessary to model navigation tasks where transitions between
states are fully reversible, it is highly consequential in the context of block tower assembly,
where the set of available subgoals is constrained by earlier decisions to build one part of the
tower rather than another.

3.1.4. Simulating consequences of different subgoal selection strategies
In order to understand the consequences that would be expected to follow from the different

subgoal strategies, we conducted a computational experiment. Each of these strategies offers
a different way of balancing the tradeoff between the cost of solving the chosen subgoal, the
cost required to make this choice in the first place, and the risk of choosing a poor subgoal
and getting stuck. We conducted simulation experiments to measure how well these strategies
performed across a large set of block tower problems varying in size and difficulty. Com-
putational simulations provide a systematic way to understand the tradeoffs between action
planning costs, subgoal planning costs, and the risk of getting stuck in dead-ends. While we
cannot directly manipulate how human planners approach these problems, these simulations
allow us to methodically explore how different subgoal strategies balance these competing
factors.

To ensure that we covered the behavior of the strategies across varying levels of com-
plexity, we procedurally generated 500 target towers of varying size and complexity. Target
towers were generated by placing 6 to 14 blocks in randomly selected locations such that the
tower is stable. From this tower, the outline was extracted and used as the target shape for the
subgoals. Note that there are often many possible ways of constructing the outline beyond the
sequence of blocks that generated it. For each tower, we ran the planners based on the three

 15516709, 2025, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.70135 by Stanford U

niversity, W
iley O

nline L
ibrary on [12/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



F. J. Binder et al. / Cognitive Science 49 (2025) 13 of 26

planning strategies to generate a sequence of subgoals. The subgoals were then solved using
Best First Search. Best First Search is a stochastic algorithm: when two possible states are
equally attractive under the heuristic, one is chosen pseudorandomly. To reduce the impact
of these pseudorandom choices on the results, we ran each planner 10 times and averaged the
results. We report planning costs only on towers that all three strategies could solve, to avoid
skewing cost estimates when some planners failed to complete more difficult towers. In the
simulation results reported below, we used λ = 0.1, reflecting a specific balance between pri-
oritizing progress and avoiding planning costs. However, we also explored the consequences
of using other values of λ and found that they yield qualitatively similar findings (Fig. 3b).

3.2. Results

As a baseline, we measured how well Best First Search could solve block tower problems
without the use of any subgoals. We found that thousands of states needed to be checked,
on average, before a solution was found (1.34 × 103 states; 95% CI: [318.07, 2.73 × 103]).2

Moreover, the cost of finding a solution grew rapidly with the size of the tower: the
largest third of towers required considering many more states (1.10 × 105 states, 95% CI:
[2.22 × 104, 2.47 × 105]) than did the smallest third (80.99 states, 95% CI: [55.88, 107.53]).
These results provide a benchmark for how costly it is to solve these problems by searching
directly over sequences of specific actions, and indicate that this strategy quickly becomes
prohibitively costly for more complex problems.

The Full Decomposition strategy considers all possible sequences of subgoals and selects
the one that minimizes the total planning cost, summed over subgoals. As expected, we found
that it generated sequences of subgoals where the total number of states explored across all
subgoals needed to complete the tower was lower than that of other strategies (8.64 states
total, 95% CI: [8.24, 9.03]), providing a lower bound on the computational costs associated
with solving a problem through subgoals.

The Myopic strategy considers only the utility for the very next subgoal. At λ = 0.1,
we found that it selected sequences of subgoals that led to relatively high total costs for
solving each problem (13.58 states; 95% CI: [12.33, 14.82]). Moreover, it also ran into
dead-ends for 68.14% of the problems, wherein it chose a subgoal that was itself solvable,
but left the rest of the tower impossible to reconstruct with the pieces at hand. Neverthe-
less, this strategy partly compensates for these higher action-level planning costs and risks
of dead-ends by not requiring that costs associated with subgoals beyond the next one be
considered.

Finally, the Lookahead strategy considers not only the utility of the next subgoal, but also
(at least) one potential subgoal following it. While considering the combined utility for mul-
tiple subgoals is costlier than considering only one, requiring evaluation of 1141.24 potential
subgoals on average compared to the Myopic strategy’s 111.164329, the Lookahead strategy
also ends up in dead-ends less often than does the Myopic strategy (17.43%) while also keep-
ing the total action planning cost across all chosen subgoals low (9.03 states total; 95% CI:
[8.54, 9.52]).

 15516709, 2025, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.70135 by Stanford U

niversity, W
iley O

nline L
ibrary on [12/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



14 of 26 F. J. Binder et al. / Cognitive Science 49 (2025)

(a) (b)

Fig. 4. (a) Participants were presented with two candidate visual subgoals of equal size, one that was estimated to
be costlier to solve than the other. (b) Proportion of trials on which participants chose the easier subgoal. Each dot
represents the proportion of participants who chose the less costly subgoal in a given pair.

These simulations demonstrate that using subgoals significantly improves the tractability of
block tower problems. Beyond simply using subgoals, the specific choice of subgoal strategy
matters considerably—affecting not only the cost of solving the problem once subgoals are
chosen, but also the effort required to select those subgoals and the risk of encountering dead-
ends. In addition, they establish the quantitative impact of adopting each of these strategies
on the cost of solving individual subgoals and the cost of choosing which subgoal to pursue
next.

We conducted additional experiments exploring the consequences of using higher values
of the weight parameter λ across the range from λ = 0 to λ = 100, where greater weight
is placed on the avoidance of planning costs relative to seeking progress. These experi-
ments revealed that higher values of λ generally lead to the selection of cheaper subgoals,
which increases the rate at which any of the above subgoaling strategies ends up in a dead-
end (Supplementary Appendix A.1). In the extreme, optimizing strongly for cheaper sub-
goals increases the total cost incurred choosing subgoals, as these cheaper subgoals are often
smaller, and thus more of them are needed to solve the entire problem.

4. What governs human choices over individual subgoals?

The strategies considered in the previous section favor different subgoals based on how
much progress it would achieve relative to the estimated computational cost of solving it. We
next sought to examine how sensitive people are to these computational costs when deciding
which subgoal to pursue next. Toward this end, we presented human participants with pairs
of subgoals and asked them to choose which one they would rather solve next (Fig. 4a). In
order to isolate the effect of computational cost, the subgoals in each pair were matched with
respect to the progress that would be achieved by solving them.
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4.1. Method

4.1.1. Participants
Eighty participants (57 male, MAge = 33.97, 1 excluded) were recruited through Prolific

and paid a minimum of $14 per hour. No participants from the previous were included in
this study.

4.1.2. Stimuli
To study how sensitive participants were to the planning cost of potential subgoals, we pre-

sented them with a choice between subgoals that differed in how costly they were estimated
to be. We used the same 96 subgoal pairs from the previous study. The subgoals in each pair
were matched on size, such that completing either subgoal would yield the same amount
of progress toward reconstructing the entire target tower. To determine which subgoal pairs
to include in this study, we used the empirical estimates of human planning time we had
obtained in our initial study. This procedure yielded 24 pairs of subgoals with the largest
gap in planning times between the easier and harder constituent subgoals (Fig. 2; see also
Supplementary Appendix A.5).

4.1.3. Procedure
Participants were presented with a pair of matched subgoals and were asked to choose the

subgoal that seemed easier to complete quickly. The subgoals were presented as translucent
overlays over the target tower (Fig. 4a). After completing the subgoal, participants proceeded
to the next trial without having to build the rest of the tower.

4.2. Results

We found that participants reliably chose the easier subgoal in each pair (72.63%; 95% CI:
[70.57%, 74.68%]), demonstrating that they were sensitive to the actual difficulty of these
subgoals, even when the two options yield equal progress (Fig. 4b). Participants deliberated
for an average of 6.67 s before making their decision (95% CI: [6.32, 7.07]), which is less
time than it had taken participants in the previous experiment to devise a solution for even
one of the subgoals (10.27 s, 95% CI: [9.28, 11.22]). That participants made their choices
in less time than it takes to solve a subgoal suggests that they were able to determine which
subgoal was less costly without coming up with complete solutions for both. However, the
longer a participant spent deliberating before making their decision, the more likely they
were to choose the easier subgoal (r(77) = .34, p < .001), consistent with the notion that
participants’ choices over subgoals might have been generated by partially simulating possi-
ble solutions.

5. What governs the choice of subgoals in the context of the entire problem?

We have so far established that people can evaluate the planning costs of individual sub-
goals and prefer easier ones. One possibility is that the immediate costs associated with the
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next subgoal are all that people consider at a given time, consistent with the Myopic strategy.
Alternatively, people might also consider the costs of at least one future subgoal on the path
to solving the entire problem, in line with the Lookahead and Full Decomposition strategies.
Our next experiment sought to distinguish between these possibilities by presenting partici-
pants with two hypothetical subgoals, one favored under the Myopic strategy and the other
favored under one of the nonmyopic strategies (i.e., Lookahead and Full Decomposition).
Thus, the Myopic-favored subgoal was generally easier to solve, but led participants to incur
higher overall computational costs once subsequent subgoals needed to complete the tower
were taken into account. Unlike the previous experiment, once participants made their selec-
tion, they then had to solve both their chosen subgoal and the rest of the problem, thus making
those future costs relevant to the task. To evaluate the degree to which participants consider
those future costs, we then compared how well each subgoaling strategy could account for
participants’ choices by computing the likelihood of their decisions under each strategy. Fur-
thermore, to evaluate the robustness of our findings, we tested two separate sets of subgoal
pairs in two independently recruited groups of participants.

5.1. Method

5.1.1. Participants
To assess the robustness of our findings, we conducted this experiment in two samples

of participants, using different sets of stimuli that were otherwise generated using an identi-
cal procedure. In both versions of the experiment, we recruited 100 participants after exclu-
sions. As before, participants were excluded if they were unable to complete the practice
tower or if they navigated away from the online study more than five times. In the first ver-
sion of the experiment, we recruited 124 participants (63 male, MAge = 37.04) from Pro-
lific, of whom 24 were excluded. In the second version, 140 participants were recruited (91
male, MAge = 36.61), with 40 excluded. Participants were screened to ensure that they did
not take part in the other version of the same study. Participants were paid a minimum of
$14 per hour.

5.1.2. Stimuli
Having established in the previous study that people are sensitive to the immediate plan-

ning costs of their initial subgoal, we now sought to isolate whether they also consider the
costs of future subgoals when making their initial choice. To detect this potentially subtler
sensitivity to future costs without it being overwhelmed by differences in immediate costs,
we deliberately selected pairs of initial subgoals that were approximately matched on both
planning cost and progress, but differed in their predicted future planning costs under differ-
ent subgoal selection strategies. To support a larger search space for identifying informative
subgoal pairs, we generated 1280 procedurally generated towers.

5.1.2.1. Assigning values to potential subgoals: To estimate how attractive each initial
subgoal was under different strategies, we generated the value for each initial subgoal from
the Myopic, Lookahead, and Full Decomposition strategies marginalized over the dynamic
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Fig. 6. Schematic showing how the values of the initial subgoal pair are determined by aggregating across
sequences of implied future subgoals under different strategies.

range of λ. While the utility of a subgoal (Ug) captures only its immediate progress and cost,
the value of an initial subgoal incorporates the implications of that choice for future subgoals
under each strategy.

The value of an initial subgoal is calculated differently for each strategy. For the Myopic
strategy, the value equals the utility of the subgoal itself. This means the Myopic strategy
would be indifferent between two initial subgoals matched on immediate cost and progress,
even if one choice leads to much costlier future subgoals than the other. For the nonmyopic
strategies (Lookahead and Full Decomposition), the value of the initial subgoal is the value
of the possible sequences of subgoals that can follow it, as considered by the strategy. The
value of a sequence of subgoals is the sum of the values of the subgoals that make up the
sequence. Since there are often many potential sequences following an initial subgoal, we took
into account the spread over potential sequences by weighing each sequence according to a
softmax with temperature = 1 over their values: the more promising a sequence was, the more
it contributed to the valuation of the initial subgoal. This softmax weighing of subsequent
subgoal sequences captures the intuition that the value of an initial subgoal is influenced by
the best possible following sequences, while accounting for noise in the selection of future
subgoals (Fig. 6).

5.1.2.2. Selecting subgoal pairs to maximize discriminability: For each set, we chose 12
subgoal pairs where the preferences of the different subgoal selection strategies differed max-
imally. To ensure that the range of different subgoals was covered, we selected four pairs
of small, four pairs of medium, and four pairs of large subgoals. The smallest subgoal con-
tained seven cells of the target shape, the largest 16. Within each size bin, the subgoals were
chosen according to two criteria: diagnosticity (how much did the nonmyopic and myopic
strategies disagree about which of the pair to choose) and goodness (were both subgoals a
likely choice under the different strategies?). Diagnosticity ensured that the human choice
of subgoal was informative about the subgoal selection strategy, while goodness ensured
that the subgoals were of the sort that might actually be chosen. If we had only selected
subgoal pairs where the strategies disagreed, we might have ended up with subgoals that
were both highly inefficient and implausible choices for human participants. Diagnosticity is
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Fig. 5. Participants chose between two candidate subgoals that differed in the difficulty of future subgoals. After
completing their chosen subgoal, participants finished building the rest of the tower by iterating between planning
and executing the next steps under time pressure.

defined as |(|M(A) − NM(A)|) − (|M(B) − NM(B)|)|, where NM(A) is the value of subgoal
A under the nonmyopic strategy and M(A) is the value of subgoal A under the Myopic strat-
egy. The diagnosticity term is high when one of the strategies prefers subgoal A and the other
prefers subgoal B. Goodness is defined as max(M(A) + NM(A)) + max(M(B) + NM(B)).
The goodness term ensures that both subgoals are preferred by one of the strategies. See Sup-
plementary Appendix 11 for the values assigned to the subgoals in the chosen subgoal pairs
by the different strategies.

Note that while we computed separate values for both the Lookahead and Full Decom-
position strategies, our stimulus selection criteria grouped them together as “non-myopic”
(NM) when calculating diagnosticity. This design choice means our stimuli were primarily
optimized to distinguish between myopic and nonmyopic planning (i.e., whether people con-
sider future costs at all), rather than to differentiate between different horizons of nonmyopic
planning. Consequently, while both Lookahead and Full Decomposition make distinct pre-
dictions about subgoal values, these predictions may be more similar to each other than to the
Myopic strategy for our selected stimuli.

5.1.3. Procedure
Each participant was presented with 12 pairs of subgoals. For each pair, participants were

asked to choose between two initial subgoals, then to plan and build their chosen subgoal
(Fig. 5). Since this study investigated sensitivity to future costs, participants were required
to complete building the rest of the tower to expose them to the consequences of their ini-
tial choice. After the initial subgoal, subgoals were not provided. Rather, participants moved
between the planning and time-pressured construction phase as often as they wanted—either
by clicking a button to move to the planning phase or by letting the 4 s timer expire. Sepa-
rating planning from building in the free-building phase allowed for the collection of data on
the time spent planning versus building the rest of the tower.
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5.1.4. Analysis
To understand how well different models explained human behavior, we computed the log-

likelihood of human choices under each model. The higher the likelihood that a particular
human choice would have been made by the model, the better the model explained human
subgoal choice behavior. The model provided a value for each of the two initial subgoals
in the pair. We used the softmax over the two values to generate a choice proportion across
the two subgoals that the binary choices of participants could be compared to. This compari-
son yielded a likelihood of the participants’ choices under the subgoal selection strategy. To
translate from the values to a choice proportion, the softmax temperature T was fitted using a
grid search for each model to maximize the log-likelihood of human responses.

To provide a baseline for performance, we included a strategy of indifference. Under this
strategy, participants would choose either subgoal with equal probability (50%). The indif-
ferent model provided a floor: any model that explained choices better than random was cap-
turing some aspect of participants’ subgoal selection behavior. We also established a ceiling
on model performance based on the inherent variability in human choices. Due to individual
differences, even an ideal model cannot perfectly predict every participant’s choices. This
ceiling was determined by using the empirical distribution of participant choices as the pre-
dicted probabilities. For example, if 80% of participants selected subgoal A over subgoal
B, then the ideal model would predict a choice probability of 0.8 for subgoal A. No model
can achieve better predictive performance than using these observed choice proportions as
predictions. The upper and lower bounds of the baseline and the floor were computed by
resampling participants.

The value of future subgoal sequences depends on λ: for higher λ, the strategies prefer
cheaper subgoals over those that make progress. For a model to predict human choices, it
needs to account for the preference between avoiding costs and making progress. We fitted
the λ for each model to maximize the likelihood of human choices under the model jointly
with the softmax temperature described above. See Table 4 in the Supplementary Appendix
for the fitted values.

5.2. Results

We evaluated the Myopic strategy against both a noise ceiling (i.e., the empirical distri-
bution of participants’ choices, representing the best achievable predictive performance) and
an indifferent baseline strategy that assigns each subgoal of the pair an equal probability of
being chosen (Figure 7A). We found that the Myopic strategy performed slightly better than
the indifferent baseline in the first sample (log-likelihood ratio: 0.14, 95% CI: [0.05, 0.22]),
but this advantage did not generalize to the second sample with different participants and
subgoal pairs (log-likelihood ratio: –0.00, 95% CI: [−0.00, −0.00]). In addition, the Myopic
strategy fell well short of the noise ceiling in both samples, indicating that its weak perfor-
mance was not merely a reflection of the amount of noise in these data. These two experiments
taken together do not provide strong evidence in favor of the Myopic strategy.

Next, we compared the two nonmyopic strategies to the Myopic strategy. We found that
the nonmyopic strategies performed better at explaining participants’ choices in both the first
sample (log-likelihood ratio: 0.31, 95% CI: [0.13, 0.48]) and second one (likelihood ratio:
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(a) (b)

Fig. 7. (a) The mean log-likelihood of a participant’s subgoal choices under the different strategies. Participants’
subgoal choices are best explained by nonmyopic strategies. The yellow zone (“Human Choice”) shows the best
achievable log-likelihood when predicting the aggregate choices of all participants. The gray zone (“Indiffer-
ent”) provides a floor for the explainable variance, showing the expected log likelihood when assuming indif-
ference between the two subgoals. Error bars represent bootstrapped 95% confidence intervals generated by
resampling participants. (b) The log-likelihood of myopic and nonmyopic subgoal choices for participants who
reported considering future subgoal costs to varying degrees. Shaded areas represent bootstrapped 95% confidence
intervals.

0.23, 95% CI: [0.06, 0.38]), providing converging evidence that participants considered both
immediate and future costs when making their subgoal selections. However, we found that
the nonmyopic strategies also fell short of the noise ceiling in both samples (log-likelihood
ratio in first sample: 0.50, 95% CI: [0.39, 0.72]; log-likelihood ratio in second sample: 0.28,
95% CI: [0.27, 0.59]). This gap suggests that while these models of nonmyopic subgoal selec-
tion account for a meaningful amount of the explainable variance in human subgoal choices,
there are other important factors that would need to be considered to fully capture this behav-
ioral pattern.

When directly comparing the Lookahead and Full Decomposition strategies, we found
mixed evidence for which better explained participants’ choices. In the first sample, partic-
ipants’ behavior was explained equally well by both strategies (log-likelihood ratio: –0.01,
95% CI: [−0.16, 0.18]). However, in the second sample the Lookahead strategy performed
slightly better than Full Decomposition (log-likelihood ratio: 0.16, 95% CI: [0.06, 0.30]).
This limited ability to distinguish between these two nonmyopic strategies is consistent with
our stimulus selection procedure, which prioritized discriminating myopic from nonmyopic
planning rather than distinguishing between different horizons of future consideration. As
such, we refrain from drawing strong conclusions about the relative performance of Looka-
head and Full Decomposition strategies at this time.

All of the subgoal selection strategies considered so far balance making progress on the
overall problem against reducing computational costs. This requires trading off between sub-
goals that are easy to plan versus those that are more ambitious. To evaluate the degree to
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which participants are sensitive to both of these factors, we also developed lesioned ver-
sions of the subgoal selection strategies. These lesioned models either considered only plan-
ning cost (“stingy”) or only progress (“greedy”). Neither the “stingy” nor “greedy” versions
explained participants’ choices as well as the full models (Supplementary Appendix 13), sug-
gesting that participants consider both the potential progress they would make and the poten-
tial planning costs they would incur when selecting subgoals.

While our findings so far provide strong evidence that nonmyopic strategies better explain
subgoal selection at the group level, different participants might not display these tendencies
to the same degree. To explore variation across individuals, we examined their self-reported
strategies. Specifically, in a post-study questionnaire, participants indicated the degree to
which they explicitly considered future subgoal costs when choosing which subgoal to build
next, using a 5-point Likert scale ranging from “never” to “always.” We found that while a plu-
rality of participants reported having “usually” or “always” considered future costs (first sam-
ple: 57.00%; second sample: 45.54%), a sizable proportion of participants reported “never”
or “rarely” considering future costs (first sample: 23.0%; second sample: 26.73%).

For the “never”/“rarely” group, we were unable to reliably measure a difference in perfor-
mance between the myopic and nonmyopic strategies (first sample likelihood ratio: 0.02, 95%
CI: [−0.55, 0.45]; second sample likelihood ratio: –0.12, 95% CI: [−0.37, 0.22]), consistent
with the possibility that these participants were employing different strategies altogether that
did not rely on consideration of planning costs (Fig. 7b). On the other hand, for those who
reported “usually” or “always” considering future costs, the nonmyopic strategies reliably
outperformed the Myopic strategy (first sample likelihood ratio: 0.49, 95% CI: [0.22, 0.78];
second sample likelihood ratio: 0.35, 95% CI: [0.12, 0.61]). These findings suggest that there
is meaningful variation in the degree to which participants’ choices are well explained by
a nonmyopic model of planning, and that participants are at least somewhat aware of what
strategies they use to make their decisions.

In summary, our results suggest that when people are presented with the challenge of
decomposing physical assembly problems into efficient subgoals, they are capable of rapidly
and accurately judging the relative difficulty of potential subgoals even without fully devising
a plan for completing either. Moreover, they often consider not only the immediate cognitive
costs associated with completing the very next subgoal, but also future costs associated with
solving the remainder of the problem. Finally, our findings highlight opportunities to develop
improved models that account for additional variance in human subgoal selection.

6. General discussion

Here, we examined the factors people consider—either implicitly or explicitly—when
decomposing a physical assembly problem into subgoals. Specifically, we investigated the
degree to which people are sensitive to two key factors: the contribution a subgoal makes to
the complete solution, and the computational effort involved in solving it. Our results suggest
that participants could rapidly differentiate between otherwise similarly ambitious subgoals
and used those judgments to the computationally cheaper ones. Furthermore, their choices
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indicated consideration of not just the immediate costs of planning, but also future costs, at
least to some degree.

Recent work has attempted to model task decomposition under cognitive constraints,
assuming that humans select subgoals to balance progress and planning costs. This approach,
known as resource-rational task decomposition (Correa et al., 2023), suggests that humans use
their cognitive resources efficiently when breaking down complex problems. Using a collec-
tion of simple graph-structured navigation tasks, they found evidence supporting this account:
people’s subgoal choices reflected a balance between making progress and managing planning
costs. Our model builds on this framework, extending it to visual subgoals and allowing for
the interleaving of planning and acting. One challenge posed by extending resource-rational
task decomposition to more complex tasks, such as the physical assembly problems consid-
ered in this paper, is that the number of potential states and subgoal sequences grows combi-
natorially with the size of the problem. Visual subgoals provide a natural way of generating
promising candidate subgoals: they are straightforward to define, and they can help reduce
planning costs by leveraging the physical locality of actions’ effects. However, even with a
good prior over potential visual subgoals, finding the optimal sequence becomes intractable
when exhaustively considering all options. The interleaved aspect of scoping helps manage
this complexity by trading off between finding the most optimal sequence and keeping the
cost of choosing subgoals manageable, even as it sacrifices some optimality for speed. The
interactive, embedded nature of the visual scoping account, both in time and space, may help
explain the puzzling efficiency of human hierarchical planning in complex tasks. Our findings
extend Correa et al. (2023)’s results to the more complex domain of block tower construction,
validating and generalizing the assumptions of resource-rational task decomposition to more
ecologically natural planning tasks.

Our results might help to make sense of other findings in the study of human physical
assembly. A recent study found that humans (both adults and children) are biased toward con-
structing buildings made of physical Lego blocks layerwise (Cortesa et al., 2017, 2018). This
layerwise bias can be understood through the lens of visual subgoaling: each layer defines
a clear spatial region to focus on, potentially reducing planning costs for the entire prob-
lem. However, on the concrete problems used in this study, we found that participants show
only a weak or no preference for wider over taller subgoals (first sample: 53.50% chose
wider subgoals, χ2(1) = 6.05, p = .0139; second sample: 49.63% chose wider subgoals,
χ2(1) = 0.04, p = .8405). Similarly, McCarthy et al. (2023) found that while tower-building
trajectories vary between participants, they often pass through similar states. These common
states might represent natural visual subgoals that many builders identify as useful intermedi-
ate targets. By considering both hierarchical planning through visual subgoals and the search
for specific actions, we might be able to better account for these observed patterns in human
assembly behavior.

Nevertheless, several limitations of the current study affect our ability to draw stronger
conclusions about human planning in physical assembly tasks. First, the computational
framework explored here makes strong assumptions that might not fully capture how people
approach these problems. While Best First Search was moderately predictive of human plan-
ning times, other visual heuristics (e.g., number of “holes” in the tower) explained additional

 15516709, 2025, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.70135 by Stanford U

niversity, W
iley O

nline L
ibrary on [12/11/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



F. J. Binder et al. / Cognitive Science 49 (2025) 23 of 26

variance not captured by the search algorithm. These findings suggest the value of integrating
domain-general models of search and more domain-specific models of perceptual organiza-
tion to develop improved accounts of human visual subgoaling. Additionally, while Best First
Search generates numerically precise estimates of planning costs, it is plausible that people
estimate these planning costs less precisely. It would be valuable for future modeling efforts
to explicitly account for the amount of uncertainty in people’s estimates of planning costs.

Another limitation is that the binary choice paradigm used in our experiments, while use-
ful for direct comparisons between competing hypotheses, offers limited insight into the full
range of ways people might spontaneously decompose these problems. Future work might
explore more open-ended tasks to elicit subgoals, such as enabling participants to freely define
their next subgoal. In addition, future work might make fuller use of implicit behavioral mea-
sures, such as the timing of pauses while building, to infer the achievement of subgoals.

A third limitation concerns the untested assumption that people use visual subgoals at
all when engaged in physical assembly. Indeed, other recent work on human planning in
other environments has found that variation in performance can be explained by search depth
rather than the use of subgoals (Van Opheusden et al., 2023; van Opheusden et al., 2017;
van Opheusden & Ma, 2019). While our simulations suggest that naive search without visual
subgoals is intractable on the block tower task, we required the use of subgoals in our exper-
iments. Moreover, our rectangular visual subgoal definition may be too restrictive—a more
flexible way of defining the shape of visual subgoals could better capture how humans nat-
urally decompose these problems. Future work could investigate the task conditions under
which people spontaneously use visual subgoals while building towers, and the conditions
under which they instead adopt other approaches. Such experiments could, for example, give
participants the option of subgoaling, by letting them restrict the amount of the problem they
have persistent visual access to, in exchange for additional planning time, to understand how
much additional planning time is worth losing visual access to part of the problem.

A fourth limitation of the current study is the incomplete investigation of the contextual
factors that might affect the tradeoff value of progress and computational costs, which is
captured by a weight parameter, λ, in the current work. While our experiments suggest that
varying values of λ can have profound impacts on which subgoals are favored, we did not
investigate what factors might influence this balance. Future experiments could fill this gap
by manipulating task constraints (e.g., through time pressure or the imposition of working
memory load).

A fifth limitation concerns the unresolved differences between the Lookahead and Full
Decomposition hypotheses as potential explanations for subgoal choice in the final behav-
ioral experiment. While our stimulus selection procedure successfully discriminated between
myopic and nonmyopic planning strategies, it was not optimized to distinguish between dif-
ferent horizons of future consideration. To obtain more robust and generalizable insights, we
conducted two versions of this experiment, with independently generated stimulus sets and
groups of participants. However, the gap in performance between the Lookahead and Full
Decomposition models varied enough between these two versions of the experiment that we
are unable to definitively conclude that one of these accounts is better than the other. Future
work should more systematically disentangle the contributions of variation across assembly
problems from those of variation across individual participants, which the current data are
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not well-equipped to address (because the two versions of the experiments differed along
both dimensions simultaneously).

Finally, while the block tower construction task is richer and more interactive than many
classical planning problems, it is still far from the complexity of real-world physical reasoning
tasks that people perform in their daily lives. Toward closing this gap, future work might take
similar experimental approaches to investigate human physical reasoning in contexts where
individuals are more fully embedded in the environment and can interact with it in various
ways. For example, using three-dimensional environments with more complex interactions
would enable investigation of how people choose what to look at and from what point of
view, which might have more direct relevance to predicting spontaneous visual subgoaling in
more naturalistic physical tasks (Ho et al., 2021).

The classical formalizations of intelligent behavior, such as model-based reinforcement
learning, often treat the agent and the world as distinct entities, with cognition formalized
as a process internal to the agent and the environment reduced to an input. While success-
ful in many cases, this approach might obscure the role of agent–environment interactions in
supporting cognition. The present work attempts to extend a model-based algorithmic lens
to understanding how agents can use visual and spatial structure to support efficient plan-
ning. The visual subgoaling account proposed here suggests how the spatial embedding of
a task can be leveraged to make complex planning tractable. This perspective might inform
the development of more efficient embodied artifical intelligence systems, such as robots
that reason and plan in a manner similar to humans. It might also provide a framework for
understanding how deep reinforcement learning agents generalize or fail to do so when their
environment changes (Shah et al., 2022). By developing theories of visual reasoning that
bridge the gap between human and machine planning, this work contributes to a more unified
understanding of intelligent behavior, one that acknowledges the role of agent–environment
interaction in supporting the efficiency and flexibility of human cognition.
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Notes

1 Since the sequence of subgoals is guaranteed to complete the tower, the sum of the
progress of the subgoals is always 1 and, therefore, not included in the utility calculation.

2 To enable direct comparisons between strategies, planning costs are only reported for the
towers for which all subgoaling strategies were able to find a solution.
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