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Abstract 

Human behavior is fundamentally generative: people create pictures, write stories, 

compose music, and engage in conversation. Traditional approaches in psychology and cognitive 

science have not focused on this open-endedness, instead favoring more constrained task settings 

that admit a limited set of outcomes. While those approaches have been fruitful, new approaches 

might be needed to develop a unified understanding of the generative, open-ended behaviors that 

are so emblematic of human cognition. This paper argues for the value of generative behaviors as 

targets for cognitive modeling by providing rich behavioral data that reveal how multiple 

cognitive processes coordinate. Drawing production serves as a case study illustrating this 

approach, showing how perception, memory, social inference, and motor control coordinate 

flexibly based on communicative context. Recent advances in generative AI offer both new tools 

for modeling open-ended human behavior and new comparative targets for understanding 

similarities and differences between human and machine intelligence. However, applying these 

tools effectively might require new experimental paradigms, larger datasets, and careful 

consideration of what mechanistic correspondence between models and human cognition is 

necessary for scientific progress. Embracing the open-ended nature of human thought and 

behavior poses methodological challenges but offers a promising path toward understanding the 

most distinctive aspects of human intelligence. 
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The technological advances powering recent progress in AI have accelerated the 

exploration of many pathways to intelligence. These advances stand to challenge traditional 

accounts of human exceptionalism when it comes to a variety of cognitive capacities, including 

the ability to perform complex reasoning tasks and use language in natural-sounding ways 

(Bommasani et al., 2021; Demszky et al., 2023; Frank and Goodman, 2025; Binz et al., 2025). In 

light of these developments, what does it look like to make continued progress in our 

understanding of human cognition within the broader landscape of possible "solutions" to the full 

suite of cognitive challenges that have been so far posed by nature? 

In this paper, I will argue that further progress can be made by prioritizing the study of 

generative behaviors—that is, behavior approximating the complexity and open-endedness that 

humans display in real-world settings (Carvalho & Lampinen, 2025). The first section will 

consider what generative behaviors are and why the resulting data offer valuable targets for 

cognitive modeling efforts that complement what their discriminative counterparts typically 

provide. The second section will review a case study that exemplifies this approach, namely the 

use of drawing production tasks to gain understanding of how multiple cognitive processes 

interact to support learning and communication. The third section will explore the relationship 

between the study of generative behaviors produced by humans and those produced by 

generative AI systems. I will then close by noting further opportunities and challenges presented 

by the study of generative behaviors. 

What are generative behaviors and why study them? 

The scientific study of human cognition is guided by the goal of making progress along two 

dimensions: The first is to reveal the mind's functional architecture—what the parts are, what 
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they are for, and how these parts are connected to each other. The second is to explain 

behavior—to accurately predict what people think, feel, do, and say in a variety of situations. 

Good behavioral tasks are necessary for making scientific progress along both dimensions 

because behavior is what can be observed and measured1, while everything else that scientists 

might seek to learn about how the mind is organized must be inferred from those measurements. 

But what kinds of behavioral tasks are most valuable for making progress? 

Behavioral tasks can be characterized along a continuum according to the nature of the 

responses they require. At one end are “discriminative” tasks, which involve selection or 

judgment over a limited set of options. These include making ratings along a fixed scale, 

classifying stimuli into predetermined categories, and producing estimates along specific feature 

dimensions. At the other end are “generative” tasks, which involve producing complex, 

structured outputs from an effectively infinite space of possibilities. These include drawing 

pictures, composing explanations, and solving open-ended problems. For instance, when 

studying a person’s understanding of a visual concept (e.g., dog, chair, truck), this individual 

could be asked to select which of a few different images matches that concept (discriminative), 

or they could draw an image that evokes that concept (generative). Most behavioral tasks that are 

used in cognitive psychology fall somewhere along this continuum (Figure 1).  

 
1 In principle, we can adopt a fairly expansive notion of what "behavior" is and include measurement of the behavior 
of neurons and the behavior of the circuits they comprise in the brain. Sometimes those measurements can be useful 
for distinguishing among possible internal mechanisms. But by and large, the behavior of the whole organism—in 
particular, an individual human—is the focus of this paper, because it is what we take the behavior of the neurons to 
be there to support. 
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Figure 1: Examples of generative tasks and discriminative tasks that have been used to investigate various aspects 

of human cognition (e.g., vision, memory, language, and decision-making). There is no sharp boundary 

distinguishing generative from discriminative tasks. Instead, most of these behavioral task paradigms are taken to 

vary along a continuum between more generative variants and more discriminative variants.  

 

There are several hallmarks of behavioral tasks that have long been considered to be 

valuable in psychology: First, good behavioral tasks enable accurate and precise measurement. 

For example, there are some tasks that people can perform repeatedly, giving researchers the 

ability to use repeated-measures designs to obtain more precise estimates at the individual level. 

Second, good behavioral tasks allow for measurement of sufficient behavioral variability that 

there is something to explain, but not so much variation that it would be impractical to collect 

enough data to explain it. Third, good behavioral tasks enable experimental manipulations, so 

that researchers can infer causal relationships between the variables that were manipulated and 

the variables that were measured. Discriminative tasks have been particularly successful in 

satisfying these criteria, enabling researchers to isolate and characterize elementary cognitive 

processes, such as selective attention and working memory.  

Generative behavioral tasks offer an additional virtue that has only recently come to be 

appreciated: they provide finer-grained information about the mental states that give rise to 

behavior. When two people produce the same response when performing a discriminative task—
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for example, both selecting "Somewhat agree" when answering a survey question—it can be 

difficult to determine whether they arrived at that response via the same mental processes, 

because many different mental states can produce the same observed response. By contrast, 

generative outputs leave behind behavioral traces that vary along many dimensions 

simultaneously, providing more potential avenues for distinguishing between different 

underlying mental states, provided one has the appropriate tools to measure and model that 

variation. When two people draw a dog, the resulting drawing reveals not only whether they 

possess the concept of a dog, but also which features come to mind. The challenge of measuring 

and modeling behavioral variation along many dimensions simultaneously has historically 

limited the use of generative tasks. But the widespread adoption of online data collection and 

machine learning methods in psychology have made such work much more viable in recent years 

(Fan et al., 2023). 

Generative tasks are also valuable for advancing understanding of how multiple cognitive 

processes interact. For instance, producing a coherent explanation of a scientific concept—e.g., 

why ice floats in water—requires retrieving the most relevant pieces of knowledge about water 

molecules and density, understanding the causal relationship between water’s molecular 

structure and its physical properties, selecting appropriate language to express that relationship, 

and judging whether the explanation achieves its communicative goal. Cognitive models capable 

of explaining such behavior—computational instantiations of psychological theories that specify 

causal relationships between mental representations—must therefore specify not only what these 

component processes are, but also how they interact with each other (Newell, 1973). This 

requirement makes generative behaviors particularly useful for testing hypotheses about how 

cognitive processes work in concert.  
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The study of generative behaviors complements the insights gained by using 

discriminative tasks to target individual cognitive processes. A common strategy is to develop 

models of each process separately (e.g., perception, causal inference, decision-making), with the 

expectation that these models can eventually be integrated to explain more complex behavioral 

phenomena. Whether this strategy succeeds depends on the nature of the interactions between 

processes. When cognitive processes interact in straightforward ways—for example, operating 

independently or through simple additive contributions—models of those individual processes 

may compose gracefully to predict more complex behavior. However, when processes interact in 

more complex ways that go beyond independent or linear contributions, models of isolated 

processes may fail to predict behavior when multiple processes must be coordinated—even if 

those models accurately capture individual processes (Anzellotti & Coutanche, 2018; Almaatouq 

et al., 2024). Because generative behaviors inherently require the coordination of multiple 

processes, they provide crucial tests of whether cognitive models of individual processes 

compose successfully (Figure 2). However, to test these models rigorously might also require 

substantially larger datasets and compute budgets than have historically been used in psychology 

and cognitive science.  

Both discriminative and generative tasks have important roles to play, but generative 

behaviors remain underutilized sources of evidence for testing cognitive models, particularly 

when the goal is to understand how multiple processes interact to produce complex behavior. 

The next section focuses on drawing production as a case study for this approach. Moreover, 

modern AI systems are themselves now capable of producing drawings, language, and other 

complex outputs, making it particularly timely to develop rigorous methods for studying and 

modeling generative behaviors in both humans and machines. 
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Insights from drawing production as a case study  

 

Figure 2: Schematic illustrating two hypothetical scenarios for how the cognitive processes that enable visual 

communication through drawing production might be organized. In one scenario, there are substantial interactions 

among the relevant cognitive processes (i.e., perception, memory, social cognition, and motor planning). In the other 

scenario, these same processes operate independently and serially. This figure is not comprehensive: there are other 

possible scenarios that are intermediate to these two with respect to the degree of interaction. Studying generative 

behaviors, such as drawing production, can provide crucial data to help adjudicate among these scenarios.  

 

Drawing production—the act of creating images to communicate ideas—represents a particularly 

rich domain for investigating how multiple cognitive processes interact to give rise to generative 

behavior. Drawings can vary tremendously in their visual properties, from highly realistic 

illustrations to schematic diagrams, and prior work suggests that this variation reflects 

differences in the balance of contributions from perception, memory, and social inference 

recruited during production (Fan et al., 2023). By examining how people produce drawings 

under different conditions, researchers can gain insight into both the content of underlying 

mental representations and the dynamics of how different cognitive processes coordinate with 

each other. Three insights from research on drawing production illustrate these contributions. 
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First, drawing tasks can provide a way to probe mental representations that complements 

what can be learned from discriminative tasks. When someone draws a dog, the resulting image 

can reveal what features they consider most important (e.g., four legs, tail, ears, snout), how 

those features are arranged in space, and what level of detail they choose to preserve (Fan et al., 

2018; Yang & Fan, 2021; Lu et al., 2023). Discriminative tasks require researchers to make 

theory-laden choices about which dimensions to probe, potentially missing features that are 

important but unanticipated. However, drawing tasks have their own limitations: a participant 

might fail to include an important feature because they cannot recall it or cannot successfully 

convey it through drawing. The value lies in the complementary nature of these approaches—

visual discrimination tasks provide more direct measurement of specific dimensions but are 

vulnerable to experimenter bias in selecting response options, while drawing production tasks 

can reveal unanticipated aspects of mental representations but are constrained by what 

participants can retrieve and act upon.  

Second, studying drawing production can help to reveal the iterative and interactive 

nature of cognitive processes during complex behaviors that unfold over time. Creating an 

observational drawing might seem like it could proceed through a straightforward sequence: 

perceive the scene, form a mental representation of it, then execute a motor plan to reproduce its 

appearance. However, prior work using eye-tracking suggests that it might not be so simple. In 

one study, participants continually moved their eyes between the source and their drawing 

throughout drawing production (Tchalenko & Miall, 2009). Moreover, when participants drew 

without being able to refer to the source or to their own drawing-in-progress, the resulting 

drawings exhibited substantial distortions. These findings suggest that drawing relies on ongoing 

coordination between perception (of both the source and drawing-in-progress), memory (for 
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maintaining task-relevant information), and action (for producing marks), rather than on a simple 

linear progression from perception to action. However, the exact nature of that coordination 

requires further empirical investigation. Recent computational work has begun to model the 

sequential nature of sketch generation (Vinker et al., 2025), which might help to formalize 

different hypotheses about how these processes interact over time. 

A third insight emerging from recent work is that the relative contributions of different 

cognitive processes during drawing production appear to vary depending on context and goals, 

resulting in systematic differences in how drawings look—from highly realistic depictions to 

sparse, schematic abstractions. This variation relates to a longstanding theoretical puzzle about 

how drawings derive their meaning: do they resemble the entities they depict (depending 

primarily on visual processing for interpretation) or function as symbols (whose meanings are 

determined by learned associations)? Recent empirical work suggests that drawings may span a 

continuum between these poles depending on the conditions under which they were produced 

(Yang & Fan, 2021). When perception dominates—as when creating an illustration of a visible 

scene—the resulting drawings can be interpreted with minimal reliance on prior experience. 

When memory dominates—as when drawing something one has previously seen—drawings can 

exhibit systematic distortions consistent with memory's reconstructive nature, such as boundary 

expansion or inclusion of details that were not actually present but are semantically related 

(Bainbridge & Baker, 2020). When social inference plays a key role—as when communicating 

with a particular viewer—drawings may become more abstracted, with studies showing that 

repeated communication leads to sparser drawings that nevertheless remain effective for 

individuals sharing interaction history (Hawkins et al., 2023). When drawings are used to convey 

even more abstract information, such as numerical concepts (Holt et al., 2024) or causal 
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mechanisms (Huey et al., 2023), the balance shifts even further towards reliance on prior 

knowledge and away from perceptual fidelity.  

Several important questions would be valuable to investigate in future work. What 

computational mechanisms account for the flexible coordination between cognitive processes 

(e.g., perception, memory, planning, action selection) to support drawing production in this wide 

variety of settings? What principles apply only to drawing production, and which ones also 

govern generative behaviors in other domains, including language production (Levelt, 1989; 

Gleitman et al., 2007), gesture (Goldin-Meadow, 1999), explanation (Chi et al., 1994), physical 

assembly (McCarthy et al., 2023; Binder et al., 2025), gameplay (van Opheusden et al., 2023; 

Allen et al., 2024; Chu et al., 2025), and constructive activities in educational contexts (Papert, 

1980; Chi & Wylie, 2014)? It is plausible that all of these generative behaviors might need to 

overcome some of the same abstract computational challenges, such as the encoding of sensory 

inputs into a task representation that enables the efficient selection of goal-relevant actions. But 

the content of these task representations and which actions are available might differ 

substantially across domains.  

Generative behaviors in humans and machines 

Recent advances in artificial intelligence have produced systems that are themselves 

capable of generative behaviors. Large language models generate coherent text, diffusion models 

produce images, and multimodal systems can create diagrams that blend visual and text 

elements. These machine-learning based AI systems exhibit a level of open-ended expressivity 

that is reminiscent of human generative behaviors, producing outputs that are not limited to 

selecting from a narrow set of predetermined options. These new capabilities present an 
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opportunity to study generative behaviors in both humans and machines, and to understand the 

similarities and differences in how they produce such outputs. 

The fact that AI systems can now engage in generative behaviors provides an important 

existence proof: computational artifacts are capable of approaching human-level behavioral 

expressivity in open-ended tasks. Having such artifacts makes the scientific study of human 

generative behaviors more tractable, by providing both new analytical tools for characterizing 

human behavior and new comparative targets against which human behavioral patterns can be 

evaluated. For example, generative AI systems that can produce sketches could be used to model 

the computational processes involved in human drawing production, because the images 

produced by those same systems provide a concrete basis for comparing how humans and AI 

systems approach the same generative task (Vinker et al., 2022; Mukherjee et al., 2023). 

When AI systems are adapted to model human generative behaviors, important questions 

arise concerning what we learn when those models succeed or fail. If a model achieves high 

predictive accuracy, when does this imply that similar mechanisms are also engaged by the 

human mind? In some cases, the functional demands of these generative tasks might constrain 

the space of viable computational solutions so strongly that different modeling approaches must 

converge on similar mechanisms to succeed (Cao & Yamins, 2024b). In other cases, multiple 

systems employing very different internal mechanisms might produce comparable patterns of 

behavioral outputs. Identifying cases where this second possibility applies is theoretically 

meaningful: it implies that the constraints used in developing that model (e.g., training data, 

model architecture, learning objective) are not sufficient to uniquely determine what mechanisms 

enable some behavior, and that human cognition reflects additional evolutionary and 

developmental constraints. Developing a wide variety of computational models is valuable for 
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mapping the space of solutions capable of human-like generative behavior and situating human 

cognition within that space. 

These considerations raise a fundamental question about the goals of cognitive modeling: 

what level of mechanistic correspondence between model and human is necessary for that model 

to be scientifically useful? The purpose of building cognitive models is not to achieve perfect 

predictive accuracy—a goal that would ultimately require replicating every detail of human 

neural architecture. Rather, the purpose is to provide vehicles for formulating and testing 

alternative theoretical accounts of how cognitive processes are causally related to each other and 

give rise to behavior. Such models should support both prediction and control: the ability to 

forecast behavior under novel conditions and to suggest interventions that would change 

behavior in systematic ways, with a degree of precision that is scientifically and practically 

meaningful, but no more.  

In summary, the emergence of AI systems capable of generative behaviors create new 

opportunities for psychology and cognitive science. In principle, researchers can adapt these AI 

systems to model human generative behaviors, starting with systematic comparison between 

human and AI responses on the same generative tasks (Frank, 2023). However, to fulfill their 

potential as cognitive models, it will also be necessary to establish clear model-mechanism 

mappings—determining which components of AI systems correspond to which cognitive 

processes in humans (Frank & Goodman, 2025). Establishing these mappings remains 

methodologically challenging and represents an important frontier for this work. Systematic 

study of human generative behaviors provides a crucial foundation for overcoming these 

challenges, towards developing unified cognitive models that can explain both how cognitive 
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processes interact in the human mind and what computational principles underlie generative 

behaviors in both humans and artificial systems. 

Summary and future directions 

Human cognition is fundamentally generative. People do not merely perceive the world 

as it already exists but also construct new ways of categorizing the entities around them, generate 

novel solutions to problems, and invent technologies that extend their cognitive capabilities. 

These generative capacities have been the engine of cumulative culture: art, music, written 

language, mathematics are all expressive modalities that humans created and that continue to 

evolve. This paper has argued that generative behaviors offer a valuable window into these 

quintessentially human cognitive capacities. Generative tasks, while historically challenging to 

use in rigorous experimental work, are increasingly feasible to use and provide crucial 

complements to discriminative tasks for building and testing cognitive models.  

 Recent advances in machine learning and AI have yielded systems far more capable of 

generative behaviors than ever before, presenting both challenges and opportunities for cognitive 

science and psychology (Bommasani et al., 2021; Frank & Goodman, 2025). However, 

leveraging these systems to build scientific models of the mind will likely require new 

approaches to experimental design, the collection of larger datasets, major investments in 

computing resources, and new ways of thinking about mechanistic abstraction in cognitive 

models (Cao & Yamins, 2024a). Moreover, it is not clear that current generative AI systems are 

sufficiently capable for these purposes—that they can engage in the kind of continual learning 

and adaptation needed for them to provide useful models of how humans not only use their 

existing repertoire of generative behaviors but create new ones. Embracing these more creative 
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aspects of human thought and expression might thus offer a promising path towards advancing 

theories of distinctly human intelligence.  
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