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Abstract

Human behavior is fundamentally generative: people create pictures, write stories,
compose music, and engage in conversation. Traditional approaches in psychology and cognitive
science have not focused on this open-endedness, instead favoring more constrained task settings
that admit a limited set of outcomes. While those approaches have been fruitful, new approaches
might be needed to develop a unified understanding of the generative, open-ended behaviors that
are so emblematic of human cognition. This paper argues for the value of generative behaviors as
targets for cognitive modeling by providing rich behavioral data that reveal how multiple
cognitive processes coordinate. Drawing production serves as a case study illustrating this
approach, showing how perception, memory, social inference, and motor control coordinate
flexibly based on communicative context. Recent advances in generative Al offer both new tools
for modeling open-ended human behavior and new comparative targets for understanding
similarities and differences between human and machine intelligence. However, applying these
tools effectively might require new experimental paradigms, larger datasets, and careful
consideration of what mechanistic correspondence between models and human cognition is
necessary for scientific progress. Embracing the open-ended nature of human thought and
behavior poses methodological challenges but offers a promising path toward understanding the

most distinctive aspects of human intelligence.
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The technological advances powering recent progress in Al have accelerated the
exploration of many pathways to intelligence. These advances stand to challenge traditional
accounts of human exceptionalism when it comes to a variety of cognitive capacities, including
the ability to perform complex reasoning tasks and use language in natural-sounding ways
(Bommasani et al., 2021; Demszky et al., 2023; Frank and Goodman, 2025; Binz et al., 2025). In
light of these developments, what does it look like to make continued progress in our
understanding of human cognition within the broader landscape of possible "solutions" to the full
suite of cognitive challenges that have been so far posed by nature?

In this paper, I will argue that further progress can be made by prioritizing the study of
generative behaviors—that is, behavior approximating the complexity and open-endedness that
humans display in real-world settings (Carvalho & Lampinen, 2025). The first section will
consider what generative behaviors are and why the resulting data offer valuable targets for
cognitive modeling efforts that complement what their discriminative counterparts typically
provide. The second section will review a case study that exemplifies this approach, namely the
use of drawing production tasks to gain understanding of how multiple cognitive processes
interact to support learning and communication. The third section will explore the relationship
between the study of generative behaviors produced by humans and those produced by
generative Al systems. I will then close by noting further opportunities and challenges presented

by the study of generative behaviors.

What are generative behaviors and why study them?

The scientific study of human cognition is guided by the goal of making progress along two

dimensions: The first is to reveal the mind's functional architecture—what the parts are, what
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they are for, and how these parts are connected to each other. The second is to explain
behavior—to accurately predict what people think, feel, do, and say in a variety of situations.
Good behavioral tasks are necessary for making scientific progress along both dimensions
because behavior is what can be observed and measured!, while everything else that scientists
might seek to learn about how the mind is organized must be inferred from those measurements.
But what kinds of behavioral tasks are most valuable for making progress?

Behavioral tasks can be characterized along a continuum according to the nature of the
responses they require. At one end are “discriminative” tasks, which involve selection or
judgment over a limited set of options. These include making ratings along a fixed scale,
classifying stimuli into predetermined categories, and producing estimates along specific feature
dimensions. At the other end are “generative” tasks, which involve producing complex,
structured outputs from an effectively infinite space of possibilities. These include drawing
pictures, composing explanations, and solving open-ended problems. For instance, when
studying a person’s understanding of a visual concept (e.g., dog, chair, truck), this individual
could be asked to select which of a few different images matches that concept (discriminative),
or they could draw an image that evokes that concept (generative). Most behavioral tasks that are

used in cognitive psychology fall somewhere along this continuum (Figure 1).

'In principle, we can adopt a fairly expansive notion of what "behavior" is and include measurement of the behavior
of neurons and the behavior of the circuits they comprise in the brain. Sometimes those measurements can be useful
for distinguishing among possible internal mechanisms. But by and large, the behavior of the whole organism—in
particular, an individual human—is the focus of this paper, because it is what we take the behavior of the neurons to
be there to support.



GENERATIVE BEHAVIORS 5

more
generative
more image recognition speech n-alternative forced
discriminative | categorization memory comprehension choice
VISION MEMORY LANGUAGE DECISION

Figure 1: Examples of generative tasks and discriminative tasks that have been used to investigate various aspects
of human cognition (e.g., vision, memory, language, and decision-making). There is no sharp boundary
distinguishing generative from discriminative tasks. Instead, most of these behavioral task paradigms are taken to

vary along a continuum between more generative variants and more discriminative variants.

There are several hallmarks of behavioral tasks that have long been considered to be
valuable in psychology: First, good behavioral tasks enable accurate and precise measurement.
For example, there are some tasks that people can perform repeatedly, giving researchers the
ability to use repeated-measures designs to obtain more precise estimates at the individual level.
Second, good behavioral tasks allow for measurement of sufficient behavioral variability that
there is something to explain, but not so much variation that it would be impractical to collect
enough data to explain it. Third, good behavioral tasks enable experimental manipulations, so
that researchers can infer causal relationships between the variables that were manipulated and
the variables that were measured. Discriminative tasks have been particularly successful in
satisfying these criteria, enabling researchers to isolate and characterize elementary cognitive
processes, such as selective attention and working memory.

Generative behavioral tasks offer an additional virtue that has only recently come to be
appreciated: they provide finer-grained information about the mental states that give rise to

behavior. When two people produce the same response when performing a discriminative task—
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for example, both selecting "Somewhat agree" when answering a survey question—it can be
difficult to determine whether they arrived at that response via the same mental processes,
because many different mental states can produce the same observed response. By contrast,
generative outputs leave behind behavioral traces that vary along many dimensions
simultaneously, providing more potential avenues for distinguishing between different
underlying mental states, provided one has the appropriate tools to measure and model that
variation. When two people draw a dog, the resulting drawing reveals not only whether they
possess the concept of a dog, but also which features come to mind. The challenge of measuring
and modeling behavioral variation along many dimensions simultaneously has historically
limited the use of generative tasks. But the widespread adoption of online data collection and
machine learning methods in psychology have made such work much more viable in recent years
(Fan et al., 2023).

Generative tasks are also valuable for advancing understanding of how multiple cognitive
processes interact. For instance, producing a coherent explanation of a scientific concept—e.g.,
why ice floats in water—requires retrieving the most relevant pieces of knowledge about water
molecules and density, understanding the causal relationship between water’s molecular
structure and its physical properties, selecting appropriate language to express that relationship,
and judging whether the explanation achieves its communicative goal. Cognitive models capable
of explaining such behavior—computational instantiations of psychological theories that specify
causal relationships between mental representations—must therefore specify not only what these
component processes are, but also how they interact with each other (Newell, 1973). This
requirement makes generative behaviors particularly useful for testing hypotheses about how

cognitive processes work in concert.
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The study of generative behaviors complements the insights gained by using
discriminative tasks to target individual cognitive processes. A common strategy is to develop
models of each process separately (e.g., perception, causal inference, decision-making), with the
expectation that these models can eventually be integrated to explain more complex behavioral
phenomena. Whether this strategy succeeds depends on the nature of the interactions between
processes. When cognitive processes interact in straightforward ways—for example, operating
independently or through simple additive contributions—models of those individual processes
may compose gracefully to predict more complex behavior. However, when processes interact in
more complex ways that go beyond independent or linear contributions, models of isolated
processes may fail to predict behavior when multiple processes must be coordinated—even if
those models accurately capture individual processes (Anzellotti & Coutanche, 2018; Almaatouq
et al., 2024). Because generative behaviors inherently require the coordination of multiple
processes, they provide crucial tests of whether cognitive models of individual processes
compose successfully (Figure 2). However, to test these models rigorously might also require
substantially larger datasets and compute budgets than have historically been used in psychology
and cognitive science.

Both discriminative and generative tasks have important roles to play, but generative
behaviors remain underutilized sources of evidence for testing cognitive models, particularly
when the goal is to understand how multiple processes interact to produce complex behavior.
The next section focuses on drawing production as a case study for this approach. Moreover,
modern Al systems are themselves now capable of producing drawings, language, and other
complex outputs, making it particularly timely to develop rigorous methods for studying and

modeling generative behaviors in both humans and machines.
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Insights from drawing production as a case study

CASE STUDY: Mechanisms enabling visual communication via drawing production

hypothetical scenario 1: interacting processes hypothetical scenario 2: independent processes
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Figure 2: Schematic illustrating two hypothetical scenarios for how the cognitive processes that enable visual
communication through drawing production might be organized. In one scenario, there are substantial interactions
among the relevant cognitive processes (i.e., perception, memory, social cognition, and motor planning). In the other
scenario, these same processes operate independently and serially. This figure is not comprehensive: there are other
possible scenarios that are intermediate to these two with respect to the degree of interaction. Studying generative

behaviors, such as drawing production, can provide crucial data to help adjudicate among these scenarios.

Drawing production—the act of creating images to communicate ideas—represents a particularly
rich domain for investigating how multiple cognitive processes interact to give rise to generative
behavior. Drawings can vary tremendously in their visual properties, from highly realistic
illustrations to schematic diagrams, and prior work suggests that this variation reflects
differences in the balance of contributions from perception, memory, and social inference
recruited during production (Fan et al., 2023). By examining how people produce drawings
under different conditions, researchers can gain insight into both the content of underlying
mental representations and the dynamics of how different cognitive processes coordinate with

each other. Three insights from research on drawing production illustrate these contributions.



GENERATIVE BEHAVIORS 9

First, drawing tasks can provide a way to probe mental representations that complements
what can be learned from discriminative tasks. When someone draws a dog, the resulting image
can reveal what features they consider most important (e.g., four legs, tail, ears, snout), how
those features are arranged in space, and what level of detail they choose to preserve (Fan et al.,
2018; Yang & Fan, 2021; Lu et al., 2023). Discriminative tasks require researchers to make
theory-laden choices about which dimensions to probe, potentially missing features that are
important but unanticipated. However, drawing tasks have their own limitations: a participant
might fail to include an important feature because they cannot recall it or cannot successfully
convey it through drawing. The value lies in the complementary nature of these approaches—
visual discrimination tasks provide more direct measurement of specific dimensions but are
vulnerable to experimenter bias in selecting response options, while drawing production tasks
can reveal unanticipated aspects of mental representations but are constrained by what
participants can retrieve and act upon.

Second, studying drawing production can help to reveal the iterative and interactive
nature of cognitive processes during complex behaviors that unfold over time. Creating an
observational drawing might seem like it could proceed through a straightforward sequence:
perceive the scene, form a mental representation of it, then execute a motor plan to reproduce its
appearance. However, prior work using eye-tracking suggests that it might not be so simple. In
one study, participants continually moved their eyes between the source and their drawing
throughout drawing production (Tchalenko & Miall, 2009). Moreover, when participants drew
without being able to refer to the source or to their own drawing-in-progress, the resulting
drawings exhibited substantial distortions. These findings suggest that drawing relies on ongoing

coordination between perception (of both the source and drawing-in-progress), memory (for
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maintaining task-relevant information), and action (for producing marks), rather than on a simple
linear progression from perception to action. However, the exact nature of that coordination
requires further empirical investigation. Recent computational work has begun to model the
sequential nature of sketch generation (Vinker et al., 2025), which might help to formalize
different hypotheses about how these processes interact over time.

A third insight emerging from recent work is that the relative contributions of different
cognitive processes during drawing production appear to vary depending on context and goals,
resulting in systematic differences in how drawings look—from highly realistic depictions to
sparse, schematic abstractions. This variation relates to a longstanding theoretical puzzle about
how drawings derive their meaning: do they resemble the entities they depict (depending
primarily on visual processing for interpretation) or function as symbols (whose meanings are
determined by learned associations)? Recent empirical work suggests that drawings may span a
continuum between these poles depending on the conditions under which they were produced
(Yang & Fan, 2021). When perception dominates—as when creating an illustration of a visible
scene—the resulting drawings can be interpreted with minimal reliance on prior experience.
When memory dominates—as when drawing something one has previously seen—drawings can
exhibit systematic distortions consistent with memory's reconstructive nature, such as boundary
expansion or inclusion of details that were not actually present but are semantically related
(Bainbridge & Baker, 2020). When social inference plays a key role—as when communicating
with a particular viewer—drawings may become more abstracted, with studies showing that
repeated communication leads to sparser drawings that nevertheless remain effective for
individuals sharing interaction history (Hawkins et al., 2023). When drawings are used to convey

even more abstract information, such as numerical concepts (Holt et al., 2024) or causal
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mechanisms (Huey et al., 2023), the balance shifts even further towards reliance on prior
knowledge and away from perceptual fidelity.

Several important questions would be valuable to investigate in future work. What
computational mechanisms account for the flexible coordination between cognitive processes
(e.g., perception, memory, planning, action selection) to support drawing production in this wide
variety of settings? What principles apply only to drawing production, and which ones also
govern generative behaviors in other domains, including language production (Levelt, 1989;
Gleitman et al., 2007), gesture (Goldin-Meadow, 1999), explanation (Chi et al., 1994), physical
assembly (McCarthy et al., 2023; Binder et al., 2025), gameplay (van Opheusden et al., 2023;
Allen et al., 2024; Chu et al., 2025), and constructive activities in educational contexts (Papert,
1980; Chi & Wylie, 2014)? It is plausible that all of these generative behaviors might need to
overcome some of the same abstract computational challenges, such as the encoding of sensory
inputs into a task representation that enables the efficient selection of goal-relevant actions. But
the content of these task representations and which actions are available might differ

substantially across domains.

Generative behaviors in humans and machines

Recent advances in artificial intelligence have produced systems that are themselves
capable of generative behaviors. Large language models generate coherent text, diffusion models
produce images, and multimodal systems can create diagrams that blend visual and text
elements. These machine-learning based Al systems exhibit a level of open-ended expressivity
that is reminiscent of human generative behaviors, producing outputs that are not limited to

selecting from a narrow set of predetermined options. These new capabilities present an
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opportunity to study generative behaviors in both humans and machines, and to understand the
similarities and differences in how they produce such outputs.

The fact that Al systems can now engage in generative behaviors provides an important
existence proof: computational artifacts are capable of approaching human-level behavioral
expressivity in open-ended tasks. Having such artifacts makes the scientific study of human
generative behaviors more tractable, by providing both new analytical tools for characterizing
human behavior and new comparative targets against which human behavioral patterns can be
evaluated. For example, generative Al systems that can produce sketches could be used to model
the computational processes involved in human drawing production, because the images
produced by those same systems provide a concrete basis for comparing how humans and Al
systems approach the same generative task (Vinker et al., 2022; Mukherjee et al., 2023).

When Al systems are adapted to model human generative behaviors, important questions
arise concerning what we learn when those models succeed or fail. If a model achieves high
predictive accuracy, when does this imply that similar mechanisms are also engaged by the
human mind? In some cases, the functional demands of these generative tasks might constrain
the space of viable computational solutions so strongly that different modeling approaches must
converge on similar mechanisms to succeed (Cao & Yamins, 2024b). In other cases, multiple
systems employing very different internal mechanisms might produce comparable patterns of
behavioral outputs. Identifying cases where this second possibility applies is theoretically
meaningful: it implies that the constraints used in developing that model (e.g., training data,
model architecture, learning objective) are not sufficient to uniquely determine what mechanisms
enable some behavior, and that human cognition reflects additional evolutionary and

developmental constraints. Developing a wide variety of computational models is valuable for
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mapping the space of solutions capable of human-like generative behavior and situating human
cognition within that space.

These considerations raise a fundamental question about the goals of cognitive modeling:
what level of mechanistic correspondence between model and human is necessary for that model
to be scientifically useful? The purpose of building cognitive models is not to achieve perfect
predictive accuracy—a goal that would ultimately require replicating every detail of human
neural architecture. Rather, the purpose is to provide vehicles for formulating and testing
alternative theoretical accounts of how cognitive processes are causally related to each other and
give rise to behavior. Such models should support both prediction and control: the ability to
forecast behavior under novel conditions and to suggest interventions that would change
behavior in systematic ways, with a degree of precision that is scientifically and practically
meaningful, but no more.

In summary, the emergence of Al systems capable of generative behaviors create new
opportunities for psychology and cognitive science. In principle, researchers can adapt these Al
systems to model human generative behaviors, starting with systematic comparison between
human and Al responses on the same generative tasks (Frank, 2023). However, to fulfill their
potential as cognitive models, it will also be necessary to establish clear model-mechanism
mappings—determining which components of Al systems correspond to which cognitive
processes in humans (Frank & Goodman, 2025). Establishing these mappings remains
methodologically challenging and represents an important frontier for this work. Systematic
study of human generative behaviors provides a crucial foundation for overcoming these

challenges, towards developing unified cognitive models that can explain both how cognitive
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processes interact in the human mind and what computational principles underlie generative

behaviors in both humans and artificial systems.

Summary and future directions

Human cognition is fundamentally generative. People do not merely perceive the world
as it already exists but also construct new ways of categorizing the entities around them, generate
novel solutions to problems, and invent technologies that extend their cognitive capabilities.
These generative capacities have been the engine of cumulative culture: art, music, written
language, mathematics are all expressive modalities that humans created and that continue to
evolve. This paper has argued that generative behaviors offer a valuable window into these
quintessentially human cognitive capacities. Generative tasks, while historically challenging to
use in rigorous experimental work, are increasingly feasible to use and provide crucial
complements to discriminative tasks for building and testing cognitive models.

Recent advances in machine learning and Al have yielded systems far more capable of
generative behaviors than ever before, presenting both challenges and opportunities for cognitive
science and psychology (Bommasani et al., 2021; Frank & Goodman, 2025). However,
leveraging these systems to build scientific models of the mind will likely require new
approaches to experimental design, the collection of larger datasets, major investments in
computing resources, and new ways of thinking about mechanistic abstraction in cognitive
models (Cao & Yamins, 2024a). Moreover, it is not clear that current generative Al systems are
sufficiently capable for these purposes—that they can engage in the kind of continual learning
and adaptation needed for them to provide useful models of how humans not only use their

existing repertoire of generative behaviors but create new ones. Embracing these more creative
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aspects of human thought and expression might thus offer a promising path towards advancing

theories of distinctly human intelligence.
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