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CHART-6: Human-Centered Evaluation of Data Visualization
Understanding in Vision-Language Models

Arnav Verma, Kushin Mukherjee, Christopher Potts, Elisa Kreiss, and Judith E. Fan

Abstract— Data visualizations are powerful tools for communicating patterns in quantitative data. Yet understanding any data
visualization is no small feat — succeeding requires jointly making sense of visual, numerical, and linguistic inputs arranged in a
conventionalized format one has previously learned to parse. Recently developed vision-language models are, in principle, promising
candidates for developing computational models of these cognitive operations. However, it is currently unclear to what degree these
models emulate human behavior on tasks that involve reasoning about data visualizations. This gap reflects limitations in prior work that
has evaluated data visualization understanding in artificial systems using measures that differ from those typically used to assess these
abilities in humans. Here we evaluated eight vision-language models on six data visualization literacy assessments designed for humans
and compared model responses to those of human participants. We found that these models performed worse than human participants
on average, and this performance gap persisted even when using relatively lenient criteria to assess model performance. Moreover,
while relative performance across items was somewhat correlated between models and humans, all models produced patterns of errors
that were reliably distinct from those produced by human participants. Taken together, these findings suggest significant opportunities for
further development of artificial systems that might serve as useful models of how humans reason about data visualizations. All code and
data needed to reproduce these results are available at: https://osf.io/e25mu/?view_only=399daff5a14d4b16b09473c£19043£18.

Index Terms—chart understanding, graph comprehension, artificial intelligence, visualization literacy, cognitive-Al benchmarking
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INTRODUCTION

Humans can engage with a wide range of visual input modalities,
ranging from natural scenes and drawings to diagrams and data
visualizations [22, 26, 79]. Data visualizations — also commonly
known as graphs, charts, and/or plots — are indispensable tools for
supporting exploratory analysis and statistical reasoning [8, 20, 78].
They do so by leveraging a combination of visual features (e.g., color,
shape, size, position) and text-based annotations (e.g., axis labels,
legends) to efficiently convey patterns in quantitative data [5,61,77,81].
As such, interpreting any data visualization relies upon the ability to
correctly combine visual, linguistic, and quantitative information to
answer some question at hand (Figure 1). Moreover, the acquisition of
data visualization literacy — a robust ability to parse data visualizations
and derive insights from them [8, 10,21,24,27,28,73] — has been a
longstanding priority in STEM education [16].

Nevertheless, there are fundamental gaps in current knowledge of
what cognitive operations underlie data visualization understanding. In
part, these gaps reflect inherent challenges in operationalizing such a
complex cognitive construct. The same dataset can be visualized in
many different ways to facilitate understanding of different quantitative
phenomena (e.g., a person might sometimes want only to search
for a single value and other times to derive broader insights about
complex trends) [3, 11,27, 66]. The primary strategy for enhancing
understanding of data using visualization is to encode the underlying
data using different visual channels (size, shape, color, etc.) in order
to produce different types of data visualizations (bar plots, line plots,
scatter plots, etc.) [8,10,43,46,54]. The ability to perform visualization
understanding tasks is thought to rely on the coordination of several
mental processes [36], including: rapid perceptual computations

e Arnav Verma, Kushin Mukherjee, and Judith E. Fan are with the Department
of Psychology at Stanford University.
E-mail: {arnavv | kushinm | jefan }@stanford.edu

e Christopher Potts is with the Department of Linguistics at Stanford
University. E-mail: cgpotts @ stanford.edu.

 Elisa Kreiss is with the Department of Communication at University of
California, Los Angeles. E-mail: ekreiss@ucla.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

[15] with respect to a known graph schema [65]; explicit numerical
operations [33] constrained by finite working memory resources [63];
and interpretive processes that lead to more general insights [13], which
may be influenced by prior content knowledge [71].

Classical accounts of these processes are limited in that they
either are not specified in computationally explicit terms or are
derived based on a limited variety of data visualizations, thus
limiting their generalizability [25, 65, 72, 75]. To more precisely
describe the operations that enable visualization understanding, as
well as developmental changes accompanying the acquisition of data
visualization literacy, there is a need for computational models that can
contend with the diversity of real-world visualizations and are adaptable
to common visualization understanding tasks. Recently developed
“multimodal” Al systems are promising candidate models because they
can operate over a combination of visual and textual inputs to perform
a wide variety of tasks that require integrating information from both
these channels [1,44,62]. The complexity of tasks that these systems
have been reported to perform well has begun to approach that of tasks
that humans routinely face in real-world settings, including at school
and in the workplace [6, 14,42,51,62,85,87]. This progress has fueled
the promise that such ‘vision-language models’ could serve as a robust
foundation for developing scientific models of human reasoning over
multiple information modalities.

However, for such Al systems to provide a useful basis for
developing cognitive models of human visualization understanding, it is
critical to evaluate to what degree they generate patterns of behavior on
data visualization understanding tasks that approximate those generated
by humans. While strong performance has been reported for some of
these systems on data visualization understanding tasks, these reports
rely upon different measures from those typically used to assess the
same abilities in humans and generally do not directly compare model
behavior to that of humans [53,56,57,62,80,82,85]. As such, it remains
unclear to what degree any current systems approach human-level
abilities or engage in human-like reasoning about data visualizations,
thereby limiting any insights that can be drawn about the operations
involved in human visualization understanding from such models.

Our paper addresses this gap in three ways: First, we present
CHART-6 (Comparative Human-Al Graphical Reasoning Tests), a
human-centered suite of data visualization understanding assessments
from the psychology and visualization literatures. Second, we develop
an evaluation protocol to rigorously assess the performance of vision-
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Fig. 1: Sample response from all evaluated models for a multiple-choice item. Responses after processing are shown in bold and are used for
comparison against human and model responses. Responses without bold characters indicate invalid responses.

language models on question-answering tasks germane to visualization
understanding, designed to enable direct comparison to human behavior.
Third, we use this protocol to evaluate the performance of several state-
of-the-art vision-language models against human behavior on CHART-6,
with respect to both how well these models perform and how well they
emulate human-like behavior on these tests. We found that many of
these models often failed to produce valid responses when administered
these tests. Even when focusing on items for which models did
produce valid responses, we found that they still achieved reliably
lower performance than did the adult human participants represented
in this work. Direct comparison of human and model performance
revealed that humans generally outperformed models, and that the
items which humans found difficult were not necessarily those on
which models also displayed worse performance, though there were
some categories of items where human and model performance was
comparable. Nevertheless, we found that no model produces patterns
of responses that approach the human noise ceiling, suggesting that
further innovation is needed to develop models that can form the basis
of cognitive models of human visualization understanding.

2 METHOD

Progress towards computational models that emulate human
understanding of data visualizations requires meeting two key
methodological challenges: (1) establishing common standards by
which to assess understanding of data visualizations in humans and
Al systems, and (2) conducting controlled evaluations of human and
Al understanding of data visualizations that support direct comparison
between these two systems. This effort follows in the tradition of
recent human and Al benchmarking work in the cognitive sciences
[4,7,23,32,55,58,60].

2.1 Test suite

Leveraging prior work on developing tests of data visualization literacy
in the psychology and visualization literature [30,31,40,41,46] we
developed a diverse test suite that provides broad coverage of the skills
that are considered to be important when assessing data visualization
literacy in humans (Figure 2).

All of these tests consist of a series of test items, each presenting an
image of a data visualization paired with a question posed in natural

language. Three tests consist primarily of multiple-choice questions,
requiring a response that matches one of several provided options.
The remaining three tests consist of questions requiring a numerical
response. Since many tests had multiple questions paired with a given
visualization, we refer to each unique visualization-question pair as a
test ‘item’ in each of the tests. Below, we provided a brief description
of each of the six tests included in CHART-6.

GGR GGR is a 13-item test containing three bar plots, three line
plots, an icon array, and a pie chart [30]. The test was designed to probe
a compact hierarchy of abstract abilities, progressing from “reading the
data” to “reading between the data” to “reading beyond the data” [27].
Nine of the test items require a numerical response and four of them
were multiple choice. While the answers for several items are numeric,
since the designers of the test assessed performance by computing the
proportion of responses that were exact matches to the true answer, we
also treated this test as one whose answers were ‘multiple-choice’.

VLAT The Visualization Literacy Assessment Test (VLAT) is a
53-item test containing 12 graph types [46] — line chart, bar chart,
stacked bar chart, normalized stacked bar chart, pie chart, histogram,
scatter plot, bubble chart, area chart, stacked area chart, choropleth
map, and tree map — each generated using data obtained from news
articles. VLAT groups items into more concrete tasks than in GGR,
including questions that involve: retrieving values, finding extrema,
finding anomalies, making comparisons, determining ranges, finding
correlations & trends, and finding clusters. All of the test items are
multiple choice (34 items with four options; 3 with three options; 16
were True/False).

CALVI The Critical Thinking Assessment for Literacy in
Visualizations (CALV]) is a 60-item test focusing on the ability to
compensate for misleadingly constructed data visualizations, such as
the use of inappropriate scale ranges or unconventional scale directions
[31]. It is composed of 45 items which feature such misleading
visualizations, enabling direct comparison between human and model
behavior in cases where many humans are expected to fail. All of the
test items in CALVI require multiple-choice responses.

HOLF HOLPF is a 384-item test containing 64 bar plots procedurally
generated from eight real-world datasets. Each chart was paired with
six different questions measuring the ability to retrieve values, make
comparisons, and determine ranges, yielding 48 unique questions in
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Fig. 2: We present CHART-6 (Comparative Human-Al Graphical Reasoning Tests), a human-centered suite of data visualization understanding
benchmarks, to assess how close state-of-the-art vision-language models are to achieving both human-level performance and human-like behavior
on reasoning tasks involving data visualizations. This test suite spans a wide array of different approaches to designing such assessments, ensuring
broad coverage of the skills that are considered to be important when assessing human data visualization literacy.

total. While in VLAT and GGR each plot is paired with an uneven
number and variety of types of questions, in HOLF each plot was paired
with all six question types, making it possible to disentangle the impact
of various plot attributes from properties of the underlying dataset. This
test was originally used in controlled laboratory settings to characterize
human judgments concerning which of several plots would be most
informative to other people for answering a particular question [41].
HOLF-Multi HOLF-Multi is a 216-item extension of HOLF
containing 72 bar, line, and scatter plots [40]. What distinguishes
HOLF-Multi from HOLF is a larger variety of graph types. These plots
were generated from the same eight datasets as in HOLF, and each plot
was paired with 3 questions, yielding a total of 24 unique questions.

ChartQA-Human ChartQA [56] is a data visualization understand-
ing benchmark containing plots obtained from various web sources such
as Statista and Pew Research. An initial set of questions about them was
generated by a combination of human participants and language models,
which was then refined by the benchmark developers. Vision-language
models are routinely evaluated on the test split of this benchmark, which
consists of 2,490 questions pertaining to 1,509 plots. Here we consider
only the set of items in ChartQA that require numerical responses.
We constructed ChartQA-Human by sampling a random subset of 125
items from the ChartQA test set such that different types of graphs, data
sources, and question styles i.e., human-written vs. template-based)
appeared in roughly equal proportion to their relative frequency in the
full set of ChartQA items.

2.2 Task categories

Because these six tests were developed independently of one another,
they used ways of organizing items into task categories that were
not commensurate with one another (e.g., “find trends & correlations”
and “read beyond the data”). To conduct analyses that spanned these
different tests, we defined a common set of task categories that could be
applied to all tests: value identification, where participants retrieve an
individual value appearing in a plot (e.g., finding the maximum value);
arithmetic computation, where participants are expected to perform
simple arithmetic operations over multiple values displayed in the plot
(e.g., finding the average of two values); and statistical inference, where
participants must estimate latent parameters in a statistical model based
on the values shown (e.g., judge the strength of trends or presence
of clusters). The only exception was ChartQA-Human which did not
initially specify any task categories to organize the test items it contains.

2.3 Measuring data visualization understanding in humans

Where available, we leveraged existing human behavioral data, and
where necessary, collected new data by conducting studies with human
participants.

GGR and VLAT Data were collected in a previous study with 1,135
human participants recruited via Prolific [52]. Each participant was
asked to complete both of these tests in a single session with test order
randomized across participants.

CALVI Data were collected in a previous study with 497
participants ! [31]. Participants were recruited via Prolific and given a
30-item test: 15 were randomly sampled from the set of 45 misleading
items, while the other 15 were always the same set of non-misleading
items.

HOLF and HOLF-Multi Data were collected in a previous study
with 531 participants on HOLF 2 and 1,743 participants on HOLF-
Multi [40,41]. In both studies, each participant was presented with
eight items drawn from the full set of test items, such that they only
saw one plot and question pertaining to each of the eight datasets.

ChartQA-Human We recruited 50 participants via Prolific in the
present study to complete ChartQA-Human, a 125-item representative
subset of the ChartQA benchmark. Each participant completed a set of
25 items sampled at random from the full set of 125 items. Participants
provided informed consent and were compensated for their time ($15.50
per hour). All study procedures were carried out in accordance with
the cognizant university IRB.

2.4 Measuring data visualization understanding in models

Model suite To determine which vision-language models to include
in our evaluation, we prioritized those that achieved strong performance
on other benchmarks that involve reasoning over visual and linguistic
inputs [47,85]. In addition, to improve the robustness of our findings,
we sought to include a suite of models that was reasonably diverse
and representative of current modeling approaches with respect to
architecture, size, and pre-training protocol. We selected eight models
in total, which included three pairs of models that shared similar
architectures and training regimes. and Blip2-
FlanT5-11B used the 4B-parameter (FlanT5-XL) and 11B-parameter
(FlanT5-XXL) versions of the FlanT5 language model respectively [14].
Both models used the same BLIP-2 pre-training regimen [48]. Similarly,

and used the same
CLIP-ViT-L-336px vision encoder and the 7B-parameter and 13B-
parameter version of the Vicuna language model respectively. Both
models were trained using the LLaVA-1.5 framework [51,67]. MatCha-
0.3B [50] augments the pre-training of [45] with
additional tasks intended to enhance its general visual and quantitative
reasoning performance. We also included LLLaVA1.6-Yi-34B [51],
which uses the 34B-parameter version of the Yi language model [84]

'Downloaded on May 2024 at: https://osf.io/pv67z.
2Downloaded on January 2024 at:
https://github.com/cogtoolslab/davinci_public2023.
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Test Value Identification

Arithmetic Computation

Statistical Inference

GGR read the data read between the data read beyond the data
VLAT retrieve value, find extremum, make comparisons find correlations/trends, characterize
determine range distribution, find anomalies, find

clusters

CALVI retrieve value make comparisons find correlations/trends, find
extremum, make predictions,
aggregate values

HOLF retrieve value make comparisons, determine range = —

HOLF-Multi retrieve value make comparisons predict trend

ChartQA-Human — —

Table 1: The relationship between the original task categories and the common set of task categories that can be applied across all six tests. Each
row contains the names of the task categories originally defined in each test.

trained using the LLaVA-1.5 framework. Finally, we evaluated GPT-
4V, a highly performant proprietary model 3 [62].

Extracting model output Each model was evaluated on all 851 test
items from GGR, VLAT, CALVI, HOLF, HOLF-Multi, and ChartQA-
Human. The input to models consisted of two components: (1) an
image containing a data visualization and (2) a text prompt containing a
question about the visualization written in English. General instructions
describing the nature of the task were prepended to each question.
In addition, all prompts were formatted to match the model-specific
prompts used during training (e.g., prepending the word Question:
before each question; see Appendix for details).

To assess the test-retest reliability of responses generated by models,
we presented each test item 10 times to every model, yielding a total of
8,510 responses per model. We explored commonly used strategies for
improving the diversity and fluency of model outputs, including nucleus
sampling [38,70], a decoding procedure wherein sampling is performed
over the smallest possible set of words whose cumulative probability
exceeds a probability threshold, rop-p. Specifically, we identified
the combination of top-p and temperature values for each model that
produced the best performance on one test (in our experiments, VLAT),
and then used these same model-specific top-p and temperature values
for the remaining tests.

Processing model output Determining whether a model had
correctly answered a question usually required further processing and
validation (Figure 3; see Appendix for details). For instance, several
models produced verbose responses that did not conform to any of the
required response formats (i.e., multiple choice, True/False, numerical
response). In particular, and

often returned the full input prompt as part of its response,
so we applied further processing to excise the prompt from any
responses that included them. Following prior work [85], we also
used GPT-4* to extract only the relevant information in the correct
response format from the raw model output. For items that required a
floating-point answer, any strings prefixed or suffixed to the floating-
point value (e.g. “$” in “$3.27” or “cm” in “4cm”) were removed.

Setting model hyperparameters The max_new_tokens parameter
for all models was set to 270, a relatively high value in order to reduce
the likelihood of obtaining a prematurely truncated response. We
conducted a grid search over possible combinations of temperature and
top-p parameters that maximized each model’s performance on VLAT,
then used these values when evaluating that model on the remaining
assessments. We considered temperature values of 0.2, 0.4, 0.6, 0.8,
and 1.0 when fop-p was set to 1.0; and fop-p values ranging between

3Evaluation done through Azure OpenAl using model GPT-4V version
vision-preview from April-May 2024.

4Evaluation done through Azure OpenAl using model GPT-4 version
1106-preview from April-May 2024.

Model top-p  temperature

0.6 1.0
Blip2-FlanT5-11B 1.0 1.0

0.4 1.0

1.0 0.4
LLaVA1.6-Yi-34B 1.0 0.4

0.8 1.0
MatCha-0.3B 0.4 1.0
GPT-4V 1.0 0.2

Table 2: Top-p and temperature hyperparameters used in the current
model evaluation study.

0.2, 0.4, 0.6, 0.8, and 1.0 where temperature was set to 1.0 (Table 2).

2.5 Statistical analyses

Overall, our statistical analyses aimed to account for reliable variation in
model behavior across vision-language models and human participants.
We additionally explored the contribution of other factors, including
test type, question type, and graph type. Towards this end, we fit
generalized mixed-effects linear regression models to assess the relative
contribution of each of these factors in predicting model and human
responses. We used non-parametric resampling methods to provide
quantitative estimates of effect sizes for each factor.

Linear Models We constructed linear regression models to assess
the effect of different predictors (i.e., graph type, task type, model)
on visualization understanding performance. We used nested model
comparisons as our general approach to hypothesis testing as it provides
a unified framework that goes beyond the narrower set of cases
considered by traditional hypothesis tests (e.g., t-tests, ANCOVA).

For example, to assess whether different vision-language models
reliably varied in performance, we fit a mixed-effects logistic regression
model predicting whether a response was correct or incorrect from
model type, fitting random intercepts for each test item. We then
compared the fit of this model to a null model that included only the
random-effects term for item. In more targeted analyses comparing
GPT-4V and Humans across items involving different types of graphs,
we fit a mixed-effects linear regression model predicting proportion
correct from ‘“agent type” (i.e., all models and Humans), graph type,
and their interaction, with variation across individual items modeled
using random intercepts. To assess the degree to which any performance
gap between GPT-4V and Humans differed across items involving
different graph types, we compared the above model to one without
the interaction term. We conducted an analysis following the same
structure to compare performance by GPT-4V and Humans across
different task categories.
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Confidence Intervals To estimate uncertainty in our point
estimates of performance, we constructed 95% confidence intervals
using bootstrap resampling. For each model, we resampled items with
replacement 1,000 times, each time re-computing performance and
retaining only items for which valid responses were ever generated.
To estimate differences between any two groups, we constructed
95% confidence intervals based on the sampling distribution for the
difference between the point estimates for each group derived on each
bootstrap resampling iteration.

3 RESULTS

Our core finding is that current state-of-the-art vision-language models
consistently underperform humans on reasoning tasks involving
data visualizations, and that this gap is especially pronounced for
assessments that were developed to measure these skills in humans.

3.1 How often do models produce valid responses?

First, we determined which model responses were correctly formatted,
and thus amenable to further analysis. For multiple-choice questions in
GGR, VLAT, and CALVI, a response was considered to be valid if the
processed response was an exact match to one of the multiple-choice
options. For numerical-response questions in GGR, HOLF, HOLF-
Multi, and ChartQA-Human, a response was considered to be valid if it
contained a single floating-point value.

Using these criteria, we computed the proportion of valid responses
generated for each test item by every model (Figure 4). We
found that no model always provided valid responses. When
pooling all items across tests, we found that LLaVA1.6-Yi-34B
produced the lowest proportion of valid responses (average: 0.32;
95% CI = [0.30, 0.34]; 2735/8510 responses were valid) and
MatCha-0.3B produced the highest proportion of valid responses
(average: 0.83; 95% CI = [0.82, 0.84]; 7082/8510 responses were
valid). However, the BLIP-2 variants stood out for most consistently
producing a high proportion of valid responses across all tests (Blip2-
FlanT5-4B: 0.82; 95% CI = [0.75, 0.88]); Blip2-FlanT5-11B: 0.80;
95% CI =[0.72, 0.86]).

These results suggest that reliably extracting task-relevant output
from these models remains challenging.  This limitation has
implications for the way that sound comparisons between model
and human performance can be made, depending on whether invalid
responses are considered to be incorrect responses generated under fair
evaluation settings, and thus reflect limitations of the model, or are
considered to be the product of limitations in our evaluation protocol.
To ensure that our conclusions are not dependent on this choice, we
conducted subsequent analyses under both ways of interpreting invalid
responses from models.

3.2 How often do models produce accurate answers?

Next, we compared the accuracy of the responses achieved by models
to that by human participants (Figure 5). We established an upper
and lower bound on estimates of model performance by computing
accuracy when considering only valid responses (upper bound) and and
when considering all responses, including invalid ones, where invalid
responses were marked as incorrect (lower bound). For GGR, VLAT,
and CALVI (the ‘multiple-choice’ tests), we computed the proportion
of correct responses produced by humans and models. For the 9 items
requiring numerical responses in GGR, responses were only deemed
correct if they exactly matched the ground-truth answer provided by
the original test designers, to ensure fair comparisons between vision-
language models and human responses to items on this test. For HOLF,
HOLF-multi, and ChartQA (the ‘numerical-response’ tests), following
prior work [56,57], we computed a relaxed accuracy metric, which
considers a response to be correct if it falls within 5% of the correct
answer. The same standard was applied to both human and vision-
language model responses.

We found that models reliably differed in performance from one
another (x2(7) = 3,591, p <.001). We further found that considering
only valid responses inflated estimates of model performance on the
numerical-response tests to some degree (A proportion correct: 0.041;
95% CI = [0.024, 0.057]), with a more modest impact on estimates
of model performance on multiple-choice tests (A proportion correct:
0.12; 95% CI = [0.066, 0.18]). These results suggest the value of
jointly considering both stricter and more lenient ways of assessing
model performance to more clearly establish the range of expected
performance levels for any given model.

When examining only the valid responses generated by models
(Figure 5), we found that GPT-4V was the best performing model
on five out of the six tests. However, it performed reliably worse
than human participants on GGR (A mean proportion correct (model
— human): -0.56; 95% CI = [-0.78, -0.30]), HOLF (A mean
relaxed accuracy: -0.14; 95% CI = [-0.25, -0.15]), and HOLF-
Multi (A mean relaxed accuracy: -0.07; 95% CI = [-0.16, -0.02]).
It did approach human performance on VLAT (A mean proportion
correct: -0.12; 95% CI = [-0.26, 0.01]) and ChartQA-Human (A mean
relaxed accuracy: -0.060; 95% CI = [-0.14, 0.020]).

performed best among models on CALVI, and also at a level
approaching human performance (A mean proportion correct: -0.23;
95% CI =[-0.42, -0.018]). Among those items for which

could generate a valid response at all, the gap between

and Humans was all but closed for the misleading items (A mean
proportion correct: -0.01; 95% CI = [-0.28, 0.22]), but not for the
non-misleading items (A mean proportion correct: -0.42; 95% CI = [-
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Fig. 5: Human and model performance on (A) the mean proportion correct in multiple-choice assessments (GGR, VLAT, and CALVI) and (B) the
mean relaxed accuracy in numerical-response assessments (HOLF, HOLF-multi, and ChartQA). Relaxed accuracy is calculated by the proportion of
responses that fall within 5% of the correct answer. Empty circles represent estimates of model performance based on all responses, with any invalid
responses marked as incorrect. Filled circles represent estimates of model performance based only on valid responses, and therefore reflect an
upper bound on model performance. All error bars represent bootstrapped 95% confidence intervals.

0.90, -0.22]).

We also compared model performance to that of humans using
all model responses, with any invalid model responses marked as
incorrect. Under these conditions, we found that GPT-4V performed
best among all models on all six assessments, including CALVI. Again
we found that GPT-4V performed worse than human participants
on several of the tests: GGR (A mean proportion correct (model —
human): -0.58; 95% CI = [-0.76, -0.35]), CALVI (A mean proportion
correct: -0.37; 95% CI = [-0.50, -0.23]), HOLF (A mean relaxed
accuracy: -0.37; 95% CI = [-0.50, -0.23]), and HOLF-Multi (mean
relaxed accuracy: -0.14; 95% CI = [-0.19, -0.09]). It did approach
human-level performance on VLAT (A mean proportion correct: -
0.12; 95% CI = [-0.25, 0.01]). However, by contrast with what we
found when examining only valid responses, GPT-4V did not achieve
human-level on ChartQA-Human (A mean relaxed accuracy: -0.26;
95% CI = [-0.34, -0.17]).

These results suggest meaningful variation across assessments and
evaluation strategies with respect to the apparent size of the gap in
performance between current vision-language models and humans on
data visualization understanding tasks. In particular, we found that
when we considered only items for which models could generate valid
responses, the model-human performance gap narrowed considerably,
especially for the subset of items from ChartQA, which is widely used
to benchmark multimodal reasoning capabilities in the machine learning
literature. However, this gap widened substantially when we considered

all responses generated by models, including those on items for which
it never produced a properly formatted response. Taken together, our
analyses show a reliable gap in performance between these models
and human participants on several of the tests in our suite, including
GGR, CALVI and HOLF, suggesting the value of using a diversity
of independently designed measures for identifying opportunities for
further model development.

3.3 How does model and human performance vary across
different types of graphs and tasks?

We next examined the degree to which the model-human performance
gap varied across different categories of test items, regardless of which
test they had come from. Specifically, we examined variation in
performance that could be attributable to the type of graph shown
(e.g., bar plot vs. scatter plot) or the type of task being performed (e.g.,
value identification vs. arithmetic computation). Here we focused on
the comparison between GPT-4V and Humans, because GPT-4V was
the most consistently high-performing model on our suite of tests.

We found that Humans consistently outperformed GPT-4V on most
types of graphs, regardless of whether an item came from a multiple-
choice or numerical-response test (Figure 6 left). The exceptions were
stacked area and bubble charts that required multiple-choice responses
and pie charts that required numerical responses. For these item
categories, GPT-4V scored higher than humans. However, we did
find that the kinds of graphs on which Humans did well also tended to
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Fig. 6: Mean proportion of correct responses between GPT-4V and Humans across different categories of graphs (left) and tasks (right).

be the ones on which GPT-4V also performed well (Pearson’s r = 0.40,
p =.091). Nevertheless, we found that the size of the gap between
GPT-4V and Humans did reliably vary across different types of graphs
(x*(12) = 23.993, p = 0.020).

We found that Humans outperformed GPT-4V across all three
task types (i.e., value identification, arithmetic computation, statistical
inference; Figure 6 right). We further found the kinds of tasks on which
Humans performed well were also often the ones on which GPT-4V
also performed well (Pearson’s r = 0.94, p = 0.005) though the size of
the gap did vary across tasks (y2(2) = 21.288, p <.001).

Taken together, this more detailed comparison between GPT-4V and
Humans suggests that some of the categories of items that were more
difficult for Humans were also relatively more difficult for GPT-4V,
even though GPT-4V achieved lower overall performance relative to
Humans.

3.4 How similar were the error patterns generated by
models and humans?

To more thoroughly investigate any covariation between human and
model performance, we analyzed the full set of error patterns produced
by humans and all models across the six assessments (Figure 7).
Comparing error patterns across items is valuable because they could
reveal aspects of how model and human behavior relate to each other
that might not be apparent based on analyses of average performance
on entire tests or pre-defined categories of items. For each model,
we constructed two versions of an error-pattern vector with length
equal to the total number of items, where each element represented
the proportion of correct responses it generated for a single item. One
version of this error-pattern vector was derived from those items for
which that model had generated at least one valid response; the second
version was defined for all items, including ones where the model
generated only invalid responses, which were marked as incorrect. We
then constructed an analogous error-pattern vector for humans, where
each element represented the proportion of correct responses across
all participants who had been given that item. Next, we computed
how correlated the error-pattern vectors were between humans and all
models. We computed a human “noise ceiling” reflecting how well
any model could be expected to approximate human error patterns,

given the variability in our estimates of human performance. We
estimated this noise ceiling by constructing the sampling distribution
of the Spearman-Brown-corrected correlation between error patterns
computed on randomly partitioned halves of the human data.

When restricting estimates of human-model consistency to the items
for which we obtained valid responses, we found that all models across
all six tests consistently fell far short of the human noise ceiling,
with different models being closer to that ceiling for different tests.
GPT-4V was the closest for GGR (0.21; 95% CI = [0.020, 0.45];
noise ceiling: 1.00; 95% CI = [1.00, 1.00]), HOLF-Multi (0.63;
95% CI = [0.50, 0.74]; noise ceiling: 0.99; 95% CI = [0.98, 0.99]), and
ChartQA-Human (0.43; 95% CI = [0.29, 0.56]; noise ceiling: 0.89;
95% CI =[0.80, 0.94)). was closest for VLAT
(0.32;95% CI=10.17, 0.47]; noise ceiling: 1.00; 95% CI=[1.00, 1.00]).

was closest for CALVI (0.51; 95% CI = [0.25, 0.78];
noise ceiling: 0.99; 95% CI =[0.99, 1.00]). Finally, LLaVA1.6-Yi-34B
was closest for HOLF (0.42; 95% CI = [0.34, 0.50]; noise ceiling: 0.89;
95% CI =[0.88, 0.91]).

When estimating human-model consistency when considering
all items, including those for which a given model gen-
erated only invalid responses, GPT-4V was the closest to
Humans across all assessments, but it still fell short of
the human noise ceiling in every test, including GGR (0.21;
95% CI = [0.04, 0.42]), VLAT (0.38; 95% CI =[0.19, 0.57]), CALVI
(0.31; 95% CI = [0.12, 0.50]), HOLF (0.44; 95% CI = [0.37, 0.50]),
HOLF-Multi (0.55; 95% CI =[0.43, 0.65]), and ChartQA-Human (0.34;
95% CI =[0.22, 0.45]).

Taken together, these findings suggest that when scrutinizing
the patterns of performance from models and humans more
comprehensively, current vision-language models generate error
patterns that are reliably distinguished from those produced by humans.
While proprietary systems like GPT-4V was most aligned with human
behavior among the models in our suite, open-source models such as
LLaVA1.6-Yi-34B and did not necessarily lag far
behind. These findings suggest promising opportunities for developing
open and human-aligned models of visualization understanding.
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Fig. 7: Pearson correlation between error patterns produced by each m

odel and Humans on the same assessments. Empty circles represent

estimates of model-human correlation based on all responses, with any invalid responses marked as incorrect. Filled circles represent estimates of
model-human correlation based only on valid responses. All error bars represent bootstrapped 95% confidence intervals. Human noise ceiling
constructed by estimating the sampling distribution of the Spearman-Brown-corrected correlations between split-halves of the human data.

4 DiscussION

A key open challenge in cognitive science is to develop mechanistic
accounts of the mental processes that enable people to read and
understand a wide variety of symbolic displays of information,
including data visualizations. Here we asked to what degree vision-
language models, an emerging class of Al systems that can operate
over both text and images [39, 49, 53, 85], might provide the basis
for future development of computational cognitive models of human
visualization understanding. We constructed a suite of visualization
literacy benchmarks, CHART-6, which combines six tests that were
developed independently by researchers across different disciplinary
communities. This suite included five assessments intended to measure
data visualization understanding in humans, GGR, VLAT, CALVI,
HOLF, & HOLF-Multi, as well as a representative subset of items from
ChartQA, a commonly used benchmark that was developed to measure
these skills in Al systems. We evaluated a set of eight state-of-the-
art vision-language models and compared these models’ performance
to that of human participants. Even when considering only valid
responses from models (and thereby, if anything, overestimating their
performance), we found that models still performed worse than human
participants, on average. At the same time, the categories of items on
which GPT-4V, the most performant model, performed relatively well
were also often those that human participants did well on, suggesting
some degree of alignment in relative performance levels achieved by
this model and humans. Nevertheless, further inspection of all models’
patterns of responses across the full set of test items revealed that no
model generated responses that approached the human noise ceiling.
Our results contribute to a growing body of cognitive-Al benchmarking
efforts that employ large-scale controlled experimentation to reveal
gaps between humans and Al systems on a common set of real-world
tasks involving complex, naturalistic inputs [4,23,55,58,60,74]. Taken
together, our findings suggest that while vision-language models show
promise as a class of models that can reason over a broad class of
visualization and question types, there remain opportunities to improve
their alignment with human behavior, which would enhance their
value as potential scientific models of the computations involved in
visualization understanding.

An outstanding question concerns where the identified gaps between
models and humans come from and how to close them. Data
visualization literacy is often acquired by humans through formal
education and training. While modern vision-language models are
trained on very large datasets that likely include data visualizations
[44], they generally do not engage with these inputs or receive social
feedback in the ways that human learners do [2, 35, 64]. An important
future direction will be to uncover the aspects of human learning

environments that are critical for observing robust acquisition of these
skills in humans, and explore to what degree these insights can be
leveraged to develop more robust and sample-efficient artificial learning
systems beyond current pre-training strategies [34]. This stands to not
only help close the quantitative alignment gap but potentially mitigate
qualitative differences between vision-language models and humans.
For example, text-based annotations embedded in data visualizations
seem to influence model performance [82, 83] to a greater degree than
they do human performance [68,76], although more direct comparisons
between models and humans, similar to the present work, is needed.
Moreover, other work suggests that vision-language models often fail
to detect visual properties that are generally salient to humans, such as
intersections between lines, overlap between shapes, and the number
of simple visual elements in a scene [69] — all foundational abilities
needed to succeed on the visualization understanding tasks investigated
in the present work. One possibility is that the gaps between human
and model performance on the data visualization understanding tasks
in CHART-6 can be explained, at least in part, by general limitations
in models’ visual processing capabilities. Future work should seek to
elucidate the relationship between model performance on a broad suite
of both perceptual tasks [29,37,59] and data visualization understanding
tasks to more directly evaluate this claim.

Another important future direction will be to develop more unified
measures of data visualization literacy. Currently, the landscape of
assessments and benchmarks for measuring these skills is fragmented,
and there is a lack of consensus regarding the key components
of data visualization literacy and exactly how to measure them
[9,10, 12,31, 41, 46, 56, 80, 86]. Furthermore, there might also be
important aspects of data visualization literacy that are not well captured
by existing measures. Many benchmarks used in the machine learning
literature [17, 37,53, 80, 82] contain a large number of graphs that
are similar to those that can be found in real-world settings, yet the
questions accompanying them are often simpler than would be expected
for a comprehensive measure of data visualization understanding.
Meanwhile, assessments of data visualization literacy designed for
humans often contain fewer items, but tap into a broader array of
skills [30, 31, 46]. Future work could analyze the properties of
existing measures [12] and leverage the resulting insights to develop
scalable procedures for developing more comprehensive measures
[18]. Adaptive testing methods might also be used to more efficiently
administer these comprehensive tests to humans [19].

Data visualizations are a versatile tool for supporting discovery,
communication, and learning. We envision CHART-6 being used to
track the progress of artificial systems towards achieving human-like
behavior on tasks involving data visualizations, and thus a procedure



for identifying promising systems for further investigation as candidate
computational models of the cognitive operations involved in these

tasks.

Here we found that many current vision-language models

show promise, but still fall short of providing a strong foundation
for developing cognitive models. As progress is made on this front,
we believe it to be likely that Al systems displaying more human-like
understanding of visual, linguistic, and mathematical concepts could be
used to design more effective STEM learning environments and tools
to support scientific communication.
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A MODEL EVALUATION DETAILS
A.1 Prompt for administering test items

To construct the prompts used to administer the test items to each
model, a model-specific prefix and suffix were combined with the
original question text (Table 3; Table 4). None of the text in the original
question was otherwise modified.

A.2 Prompt for response processing

Table 5 shows prompt templates that were used to extract an answer
from a model’s response. All prompts were processed using OpenAl
GPT-4 using the hyperparameter values: max_tokens set to 2000,
top-p set to 1.0, and temperature set to 1.0. For items requiring
a numerical response in GGR, the prompt template for continuous-
response assessments was used.



Assessment type Prompt template

continuous-response Question: You will be presented with a series of data visualizations, each accompanied by a
question. Your goal is to answer each question as accurately and as quickly as you are able. It is
common for people to not be fully sure when answering these questions, but please do your best

on each question, even if you have to make a guess. {Question} Answer:

multiple-choice Question: The first part of this study consists of 53 multiple choice questions associated with
visualizations, and you will be asked to choose the best answer for each question. You are
required to provide an answer to the current question. Your answer must be one of the choices
provided. Your answer must be one of the choices provided. {Question} Choices: {Choice

1}, {Choice 2}, {Choice 3}, {Choice 4}. Answer:

Table 3: Each prompt used to administer a test item embeds the original question text (Question) and possible choices (Choice 1-4), where
applicable, within a prompt template with a model-specific prefix and suffix (terms underlined in the example above).

Model Prompt prefix Prompt suffix
Blip2-FlanT5-4B Question: \nAnswer:
Blip2-FlanT5-11B Question: \nAnswer:
USER: <image>\n \nASSISTANT:
USER: <image>\n \nASSISTANT:
LLaVA1.6-Yi-34B USER: \nASSISTANT:
Question: Answer:
MatCha-0.3B Question: Answer:
GPT-4V Question: \nAnswer:

Table 4: Model-specific prefixes and suffixes, optionally containing an <image> token to indicate where an image should be inserted and a \n
character to indicate where a new line should be inserted.

Assessment type Prompt template

continuous-response Please read the following example. Then extract the answer from the model response and type it
at the end of the prompt. Hint: Please answer the question requiring a floating-point number
with two decimal places and provide the final value, e.g., 1.23, 1.34, 1.45, at the end. Question:

{Question} Model response: {Model Response} Extracted answer:

multiple-choice Please read the following example. Then extract the answer from the model response and
type it at the end of the prompt. Hint: Please answer the question and provide the correct
option. Question: {Question} Choices: {Choice 1}, {Choice 2}, {Choice 3}, {Choice

4}. Model response: {Model Response} Extracted answer:

Table 5: Prompt templates which contain the corresponding question (Question) and choices (Choice 1-4) for a given model response
(Model Response) to an item.
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