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Abstract
Physical assembly is a difficult planning problem. Humans do
it efficiently by breaking large problems into smaller, easier to
solve portions. But what governs which portions are chosen?
We present a computational model that predicts that humans
break physical assembly problems down to minimize cognitive
costs. We test this by asking participants to choose which
part of a tower they want to build next. Participants reliably
choose the easier to solve subgoal out of two otherwise similar
options. Beyond the immediate cognitive cost, participants
also consider how difficult the rest of the tower will be to
solve. A model that takes into account near-future cognitive
costs best predicts participants’ choices. These findings show
that humans can estimate how difficult solving a subgoal will
be, and that they choose subgoals to minimize immediate and
future cognitive costs. These results help explain how humans
make efficient use of cognitive resources to solve complex
planning problems.
Keywords: planning; problem-solving; physical reasoning;
task decomposition; subgoals

Introduction
Imagine trying to assemble a shelf without the instruction
booklet. Hundreds of individual steps might be involved,
too many to plan them all at once. Not only are
there many different actions to choose from at every turn,
combining objects also leads to an explosion of possible
world states. These two factors—many possible actions,
and their compounding effects—make physical assembly a
computationally difficult planning problem. Yet, humans are
able to put the shelf together correctly. Given humans’ ability
to predict the outcome of physical interactions (Battaglia,
Hamrick, & Tenenbaum, 2013), planning can be understood
as a search over possible sequences of actions and their
consequences (Newell & Simon, 1972). How do humans
make this computationally explosive problem tractable?

People both think about individual actions (e.g., tighten
this screw) and break the problem down into smaller parts
(e.g., put together the rear support first). In many cases,
breaking a problem down into subgoals and then solving each
subgoal is easier than considering the entire problem at once
(Solway et al., 2014; Correa, Ho, Callaway, Daw, & Griffiths,
2022; Newell, Shaw, & Simon, 1958; Maisto, Donnarumma,
& Pezzulo, 2015). In the case of physical construction,
knowing which subgoals to even consider is not trivial: in
task like navigation, potential subgoals are often obvious
(namely being in a certain location), but the combinatorial
state of the environment in physical problem-solving makes it
challenging to know what subgoals to consider. One potential

solution are visual subgoals: choosing a subgoal by focussing
on a region of the workspace. Rather than imagining the
backbone of the shelf as already completed (which would
imply knowing how it needs to be completed), one could
decide to focus on the area where the back of the shelf is to be
constructed, temporarily ignoring the rest of the workspace.
This changes the input to the planning system itself.

The notion of changing the input to the planning system
to make planning easier is captured by task construals (Ho et
al., 2022; Bapst, Sanchez-Gonzalez, Shams, et al., 2019). A
task construal is a representation of a problem that has been
modified to make solving the problem easier. For example,
in the case of constructing the shelf, a task construal might
be a representation of only the relevant part of the workspace,
tools and parts that are necessary to solve the problem. This
reduces the number of actions and resulting states of the
world that need to be considered. However, task construals
are an optimal theory, meaning they give an account of how
the use of cognitive resources is minimized in an ideal way,
but it leaves open how people actually propose and select task
construals—there are myriad ways to change the construal of
a problem. Visual subgoals can be thought of as a particular,
constrained form of task construal. Focusing only on a
contiguous area of the problem provides a natural way of
simplifying planning. The constraints of visual subgoals
make this a more tractable approach than task construals
generally: proposing and evaluating a task decomposition
into areas of the problem is more tractable than proposing
and evaluating a general modification to the representation of
the problem.

Supposing that people decompose problems into subgoals,
what factors govern people’s decisions about which subgoal
to work on at a given point in time? In particular, to what
degree do people represent immediate and future cognitive
costs when deciding what part of the problem to work on
now? Here, we investigate what governs people’s choices
between different decompositions of a challenging physical
assembly problem. In a set of interlocking experiments, we
first ask if the choice of subgoal actually matters for how
difficult it is to plan. We find that there are non-trivial
differences in planning cost beyond the mere size of a
subgoal. Then, we ask if people can tell which subgoal
is a good choice when choosing between them. Indeed,
participants were sensitive to differences in planning cost
even before having planned the subgoal. Finally, do people
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consider not only the cost of the next subgoal, but also the
cost of the rest of the problem? Overall, we found that
participants took some, but not all, future costs into account.

Formal Approach
In order to capture how people choose subgoals, we propose
a resource-rational account of planning using subgoals
(Gershman, Horvitz, & Tenenbaum, 2015; Callaway et al.,
2018). This requires both a way of estimating the planning
cost of finding a set of actions for a subgoal, and a strategy
of choosing subgoals to reduce the expected planning cost of
the overall task.

Estimating planning costs using search Classically,
planning is thought of as search over a graph of potential
actions and their effects (Newell & Simon, 1972; Geffner,
2013). To estimate how difficult a subgoal is to solve, we
use the number of states explored by the Best First Search
planning algorithm, which has been suggested to best explain
human planning (van Opheusden, Galbiati, Bnaya, Li, & Ma,
2017). We operationalize the corresponding planning cost in
humans as the time spent planning.

Choosing subgoals to minimize planning costs We
propose a framework for optimal task decomposition that
minimizes the planning cost. Our framework is based on
Correa, Ho, Callaway, and Griffiths (2020). Their account
predicts that problems are best decomposed into subgoals
that minimize the total planning cost of the entire task. The
task is fully decomposed into subgoals before any actions
are taken. However, in reality, people often decompose tasks
incrementally, especially for challenging tasks where it can be
difficult to identify all subgoals in advance and to remember
a long sequence of subgoals. To address this, our framework
allows for determining the next subgoal at a time.

Choosing the next subgoal requires making a trade-off
between minimizing the planning cost of the subgoal and
maximizing the progress made towards the full goal: do I
want to bite off a small piece of the problem that I can solve
quickly, or do I want to take on a larger piece of the problem
that will take longer to solve but will get me closer to the
eventual goal? The value of a particular subgoal is formalized
as ri −ci ∗λ, where ri is the ith subgoal as a percentage of the
entire goal, ci is the planning cost, and λ controls the trade-off
between preferring subgoals that are easy to solve over those
that make substantial progress.

When choosing a subgoal, the planning cost can be taken
into account in three general ways (see Figure 1): A myopic
strategy for subgoal selection only aims to maximize the
value of the current subgoal. While this is the simplest
strategy, it can lead to subgoal choices that lead to dead
ends. The lookahead subgoal selection strategy considers
some future costs, but not necessarily all. When planning
a sequence of subgoals, this strategy chooses the sequence
of length d (including shorter sequences that complete the
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Figure 1: Three different strategies for subgoal selection
during physical assembly: myopic (only considering the
next subgoal), lookahead (also considering the next (few)
subgoals), and full decomposition (breaking down the entire
problem in advance). An example action graph is shown
on the right. Comparing not using subgoals against full
decomposition illustrates how the use of subgoals can reduce
the total planning cost.

problem) that maximizes the sum of the utility of the subgoals
in the sequence, where the utility of a subgoal is ci ∗ λ+ ri
and then passes the first subgoal in the sequence to the
action planner. While this strategy requires more effort when
selecting subgoals, it can reduce the risk of making subgoal
choices that eventually leads to bad outcomes. Finally,
the full decomposition strategy considers the entire future
planning cost (equivalent to Correa et al. (2020)). The full
decomposition strategy differs from the lookahead strategy
with d = ∞ insofar as it decomposes the entire problem
once and then sticks to the decomposition, whereas the
lookahead strategy chooses each subgoal individually, even
if it considers future states. The full decomposition is
guaranteed to minimize the planning cost of finding actions
given the subgoals, but it requires considering a potentially
large number of potential subgoal combinations, especially
for larger problems.

Note that this is an account of optimal task decomposition,
but not necessarily a model of how people decompose tasks.
One of the main differences is that this model assumes that
the planning cost of a subgoal is known before it is chosen.
While proxies for planning cost exist (such as the size of the
subgoal), the actual cost of the subgoal is not known until it
is solved. This model only aims to minimize the planning
cost of finding solutions to the chosen subgoals, but does not
itself minimize the cost of choosing subgoals in the first place.
For an investigation of the subgoal selection cost of various
approaches, see Binder, Mattar, Kirsh, and Fan (2021).

Hypotheses For this optimal model to apply to human
behavior, the choice of good subgoals need to matter and
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Figure 2: In each experiment, participants plan and construct subgoals on the Block Tower Reconstruction Task. During the
subgoal selection phase, participants choose between two subgoals (except experiment 1). In the planning phase, they come up
with a plan. The plan is executed under time pressure in the building phase. Experiment 3 also requires participants to complete
the rest of the tower, where they can switch between planning and building as often as they like.

people need to be able to tell what a good subgoal is. We
hypothesize that: (1) different subgoals are easier or harder
to plan than others for people—therefore, choosing good
subgoals matters for how hard a problem is to solve. (2)
People are sensitive to the planning cost of subgoals when
choosing between potential subgoals, and (3) when choosing
subgoals, people take not only the planning cost of the
subgoal itself into account, but also the planning cost of
future subgoals. To investigate these hypotheses in turn, we
conducted three interlocking experiments.

Experiment 1: Does the choice of subgoal
matter for cognitive cost?

In this experiment, we investigate whether subgoal choice
matters for cognitive cost. Intuitively, the larger a subgoal
is, the more effort it will take to find a solution. But are
there subgoals of the same size that are harder or easier to
plan? In other words, should one consider more than just the
size of a subgoal when choosing it? To investigate the effect
of choosing one subgoal over a similar one, we presented
participants with predetermined subgoals and asked them to
find solutions to it.

Methods
Block Tower Reconstruction Task We use the Block
Tower Reconstruction Task adapted from McCarthy, Kirsh,
and Fan (2020), in which participants have to construct a
physically stable 2D tower of a given shape—see Figure 2.
Similar block tower construction tasks have been used to
study planning and physical reasoning in artificial agents
(Sussman, 1975; Bapst, Sanchez-Gonzalez, Doersch, et al.,
2019) and humans (Dietz, Landay, & Gweon, 2019; Cortesa,
Jones, Hager, & Khudanpur, 2018).

Visual subgoals on the task are defined as a rectangular
region of the building area and are shown as an overlay. When

building a subgoal, participants were required to perfectly
complete the subgoal with no blocks sticking out.

In order to isolate the planning time from the time needed
to execute the plan, participants are required to first come up
with a plan for the subgoal, then to click a button to advance
to the building phase. During the building phase, participants
were subject to time pressure in order to prevent them from
doing online planning.

Participants 86 participants (51 male, MAge = 38.5) years
were recruited from Prolific and paid a minimum of $14 per
hour. We excluded 6 participants who switched away from
the study webpage too often.

Stimuli To find subgoals, we procedurally generated 128
stable block tower shapes of varying sizes. For each tower,
we generated 4 pairs of subgoals. The subgoals in a pair were
matched on their area. The simulated planning cost of solving
each subgoal was determined using the Best First Search
model. This makes the subgoal with the lower predicted cost
the best of the pair, the other one the worst.

Procedure Participants were asked to plan and build 24
predetermined subgoals, corresponding to 12 pairs randomly
drawn from the larger set. The overall order of the subgoals
was randomized. After completing the subgoal, participants
were moved to a different subgoal on a different tower.

Results

Overall performance Overall, participants were able to
solve these subgoals in a reasonable amount of time, usually
on their first attempt. The average planning time on
the first attempt1 to solve the subgoal was 8.95 seconds

1On the block tower construction task, if participants fail to
construct the subgoals (due to instability, time pressure or planning
errors), they have to start over. Here, we report the planning time
on the first attempt at building the subgoal, as this measure is not
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Figure 3: (A) The area-matched subgoals pairs with the highest difference in average planning time (displayed below each
subgoal) are shown. The solution found by Best First Search is displayed. (B) The number of costs explored by Best First
Search for a given subgoal compared against participants’ planning time.

(95% confidence interval (CI): [8.55,9.34]). Participants
required an average of 1.32 attempts to solve the subgoal
(95% CI: [1.28,1.37]), meaning that most of the time
participants solved the subgoal on the first try. Moreover,
planning time was systematically related to the size of the
subgoal (Spearman rank correlation ρ(188) = 0.385, 95% CI:
[0.271,0.498], p < 0.001).

Difference in planning time between best and worst
subgoals The simulated planning cost was used to generate
matched pairs. For the best subgoal of the pairs, the
participants found a solution in 7.93s (95% CI: [7.41,8.45])
on average. For the worst subgoal, the participants found
a solution in 9.96s (95% CI: [9.42,10.6]) on average. The
comparison of the mixed effect model with the fixed effect
of subgoal type (best vs. worst) and random effects for
participant and subgoal pair against the null model without
subgoal type was significant (χ2(1) = 34.4, p < 0.001).
Participants also made fewer errors on the best subgoal
than on the worst subgoal (mixed effect model comparison
against null model: χ2(1) = 21.8, p < 0.001). This difference
in planning time between the best and worst subgoals is
consistent with the predictions of the Best First Search model.

Graded relationship between planning time and
simulated search cost Beyond the manipulation of
best and worst subgoals, we also tested whether the Best
First Search model predicts participants’ planning time.
The Spearman rank correlation between the predicted costs
in number of states explored by Best First Search and the
actual planning time incurred by human participants is
ρ(188) = 0.491 (95% CI: [0.380,0.598], p < 0.001). While
the model leaves some variance unexplained, it is predictive
of the time humans incur during action planning.

Taken together, these results suggest that the choice of
good subgoals matters for the planning time even beyond
the size of the subgoal—therefore, choosing a good subgoal

polluted by knowledge gained on previous attempts and tracks best
how difficult participants thought the subgoal is ahead of time.

requires being able to estimate how difficult it will be to find
a solution to the subgoal.

Experiment 2: Do humans choose subgoals that
reduce cognitive cost?

The previous experiment showed that there are differences
in the planning cost of individual subgoals. Are humans
sensitive to these differences when choosing subgoals?

Methods
Stimuli In this study, we draw on the 96 pairs of subgoals
from the previous study. From those, we selected 24 pairs
of subgoals which had the highest ratio between the best and
worst planning time as measured in the previous experiment.

Participants 80 participants (57 male, MAge = 34.0,
1 excluded) were recruited through Prolific and paid a
minimum of $14 per hour.

Procedure Participants were presented with a pair of
matched subgoals and were asked to choose one to plan and
build (“choose the subgoal that seems easier to complete
quickly.”) After completing the subgoal, participants were
moved to the next choice.

Results
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Figure 4: The distribution of participants’ choices between
the best and worst subgoal. Left shows the distribution of
the average choice that participants made, right shows the
distribution of the average choice within each subgoal pair.
Bars to the right of the chance line indicate that the best
subgoals is preferred by that participant/for that subgoal pair.



Proportion of best subgoal chosen If the choice of
subgoals is driven by the planning cost of the subgoals and
participants are sensitive to the expected planning cost, they
should choose the best subgoal of the pair presented to
them. Indeed, in 72.6% (95% CI: [70.6%,74.7%]) of choices,
participants chose the best subgoal. This is reliably different
from chance (t(1895) = 22.1, p < 0.001). This shows that
participants are capable of identifying which of the two
subgoals is easier to solve before having planned it out. The
effect persists when taking into account that for some subgoal
pairs, the best subgoal can be solved with one fewer block
placement than the worst. In those pairs, participants chose
the best subgoal 77.6% of the time (95% CI: [75.1,80.1]),
compared to 65.6% (95% CI: [62.5,68.7]) in pairs with the
same number of placements.

Outcome of choosing the best subgoal Choosing the best
subgoal also leads to better outcomes: participants needed to
start over 0.0856 times per subgoal (95% CI: [0.0622,0.115])
of the best subgoals, compared to 0.459 times (95% CI:
[0.367,0.563]) on the worst subgoal. A mixed effect linear
model with restarts as the dependent variable, subgoal choice
as the independent variable, and random intercepts for each
participant and tower was compared to a simpler model
without subgoal choice. A significant difference was found
(χ2(1) = 79.4, p < 0.001). After choosing the best subgoal,
participant were also faster to find a solution to it: the average
planning time on the first attempt to solve the best subgoal
was 3.87s (95% CI: [3.68,4.07]), while the average planning
time on the first attempt to solve the worst subgoal was
6.72s (95% CI: [6.18,7.29]; mixed effect model comparison
χ2(1) = 104, p < 0.001). However, this could also be
explained by underlying skill driving both “better” choices
and faster planning.

Relation of subgoal selection time to choice Does
thinking longer when choosing the subgoal lead to better
choices? The longer a participant tends to think when
choosing a subgoal, the more likely they were to choose the
best subgoal (r(77) = 0.344, p < 0.001). This indicates that
spending more time to break the problem down results in
having an easier time to plan down the line.

Relation of subgoal selection time to planning time
The average time to choose a subgoal is 6.67s (95% CI:
[6.32,7.07]), which is less than the time taken to plan those
subgoals themselves in the previous study (10.3s, 95% CI:
[10.3,10.3]). This rules out that participants might plan out
both subgoals before choosing one of them and therefore have
access to how difficult it is to solve.

Experiment 3: Do humans choose subgoals that
reduce future cognitive cost?

Experiment 2 shows that participants take the cost of solving
a subgoal into account when choosing between subgoals. So

far, the cost of the subgoal itself was the only relevant factor.
In real life, however, choosing one subgoal will affect how
the rest of the problem can be broken down. Do participants
take the cost of the rest of the problem into account when
choosing the next subgoal?

Methods
Participants 200 participants (133 male, MAge = 36.4)
were recruited from Prolific and paid about $14/hour. 21
were excluded and 8 were unable to finish the study due to
technical issues.

Stimuli The aim is to isolate the effect that future planning
costs have on the subgoal choice. Therefore, we want to
select pairs of subgoals that are matched on both planning
cost and progress, but vary with respect to predicted future
costs under different subgoal selection strategies.

To estimate how attractive each initial subgoal is under
different strategies, we generated predictions from the
myopic, lookahead and full decomposition strategies
marginalized over the dynamic range of λ. We chose 54
subgoal pairs where the preferences of the different subgoal
selection strategies differed maximally. To be sure that we
can distinguish random behavior from the myopic strategy,
we included 18 pairs for which the initial subgoals were
allowed to vary in size and progress.

Procedure Participants were asked to choose between two
initial subgoals, then to plan and build the chosen subgoal
for 12 pairs of subgoals, randomly drawn from the larger
set of 72. Since this study investigates sensitivity to future
costs, participants were required to complete building the
rest of the tower. After the initial subgoal, subgoals were
not provided. Rather, participants moved between the
planning and time-pressured construction phase as often as
they wanted. This allowed for the collection of data on the
time spent planning the rest of the tower.

Results
Simple cost of the rest of the tower & subgoal choice Are
participants sensitive to the cost of the rest of the tower? The
simplest way of measuring this is to ask whether the ratio in
the predicted cost of the rest of the tower after completing
the subgoal predicts the choice of the subgoal. We found that
the mere cost of planning the rest of the tower without the
use of subgoals predicts the subgoal choice poorly (r(70) =
0.0938, 95% CI bootstrapped by resampling participants:
[−0.0379,0.199], p = 0.469). We found that the model based
on the mere cost of planning the rest of the tower is a poor
explanation

Subgoal selection strategies & subgoal choice The basic
planning cost of the rest of the tower does not predict
the subgoal choice—what about models of subgoal choice
that take future decompositions into account? To answer
this question, we compared the predictions of the three
strategies to the choice proportion for each pair across all
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participants. The value for λ and the softmax temperature
T (which translates the predicted value of two subgoals
into the proportion for one) were fitted for each planner to
maximize the cosine similarity of predicted and actual choice
proportions across the subgoal pairs. The lookahead strategy
predicts participants behavior, with a Pearson r(70) = 0.289(
95% CI: [0.139,0.360], p = 0.013815) between the predicted
choice proportion and the human choice proportions across
the subgoal pairs. However, the myopic strategy and the full
decomposition strategy do not predict participants choices
well (r(70) = 0.0935, 95% CI: [−0.0645,0.223], p = 0.435
and r(70) = 0.160, 95% CI: [0.000508,0.273], p = 0.180).
Simply averaging over the predicted choice proportion of the
three strategies yields a Pearson correlation of r(70) = 0.233
(95% CI: [0.0891,0.308], p = 0.0493)—the strategies taken
together predict participants behavior reasonably well.

Full decomposition strategy & actual planning time The
full decomposition strategy operates on an estimation of
the planning cost of the entire tower. While it does
not predict participants choices, it is predictive of the
actual planning time that participants incur when completing
the tower? Indeed, the choice proportion of the full
decomposition strategy predicts the ratio of the total
planning time for the rest of the tower (r(70) = −0.272,
95% CI: [−0.454,−0.0821], p = 0.0209).2 The myopic and
lookahead strategies do not predict the planning time well
(r(70) = −0.0482, 95% CI: [−0.283,0.180], p = 0.688 and
r(70) = 0.214, 95% CI: [−0.0165,0.404], p = 0.0711).

Lesioned strategies The strategies presented so far involve
a trade-off between the cost of the subgoal and the
cost of the rest of the tower. Lesioned versions of
the strategies that do not take into account the cost of

2The negative correlation means that participants preferred the
easier subgoal of the pair.

subgoals, only their progress—“greedy”—are not predictive
of human behavior for the myopic (r(70) =−0.219, 95% CI:
[−0.307,−0.0643], p = 0.0640), but are for the lookahead
strategy (r(70) = 0.289, 95% CI: [0.139,0.360], p =
0.0138).3 Conversely, versions that only care about avoiding
costs—“stingy” strategies—are not predictive of human
behavior for the myopic, lookahead, and full decomposition
strategies (r(70) = 0.105, 95% CI: [−0.0639,0.242], p =
0.381; r(70) = −0.0340, 95% CI: [−0.158,0.0994], p =
0.777; r(70) = −0.214, 95% CI: [−0.311,−0.0608], p =
0.0713).

Discussion
Here we presented a model of subgoal selection in physical
assembly that incorporates both current and future planning
costs. To test the degree to which this model describes
patterns in human subgoal selection, we conducted an
experiment in which people made decisions between different
portions of the tower—i.e., visual subgoals—they would
prefer to build next. We found that participants’ decisions
were sensitive to differences in how much planning time was
required to figure out how to complete each subgoal. While
none of the strategies were strongly predictive of participants’
subgoal choices, they are best described by the lookahead
strategy, which is consistent with participants taking some,
but not all the future costs into account when choosing
a subgoal. This is consistent with a resource-rational
model of subgoal decomposition (choosing subgoals to
minimize cognitive cost). It is also consistent with humans
decomposing problems into subparts as they go along.
Taken together, results contribute to our understanding of
how humans solve complex physical construction problems.
However, they raise the question of how humans are capable
of the metacognitive feat of estimating the planning costs of
potential subgoals.

Notably, the subgoal selection strategies as outlined are
optimal theories that describe what the best choice would be.
One assumption of the theory is that the actual planning cost
of a subgoal is known ahead of time. Another is the value
for a subgoal is derived from the cheapest possible sequence
of subgoals that follow it. Both are required to determine
the optimal subgoal choice, but neither is necessarily true of
humans. Beyond that, the analyses as presented combine the
behavior of all participants, but the strategies that participants
follow may vary systematically across individuals as well as
across problem contexts. Measuring the likelihood of human
choice behavior under different strategies is a promising
avenue for converging insight.

While the block tower reconstruction task is a richer task
than the simple grid world tasks often used to study planning,
it is still a greatly simplified version of the real world. Future
work aims to extend this work to more realistic settings with
richer action spaces, uncertainty and imperfect information.

3The greedy full decomposition strategy rates all full
decompositions as equally good.
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