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Abstract

Many tasks feel like chores, while others are fun. Why? Here
we leverage a popular puzzle game, Sokoban, to explore po-
tential sources of variation in how enjoyable different levels
of this game are to solve. In Sokoban, players navigate a
grid world, pushing boxes onto goal locations while avoid-
ing getting stuck. We first analyzed natural game play statis-
tics (n = 442 puzzles) and found that some variation in enjoy-
ment ratings could be jointly predicted by surface-level fea-
tures (e.g., puzzle area) and solution complexity. Next, we
measured how much participants reported enjoying a puzzle
immediately after attempting it (N = 250 participants). We
found that on successful attempts, participants enjoyed it more
when they took fewer moves, whereas when unsuccessful, hav-
ing made more moves was associated with greater enjoyment.
Together, these studies advance understanding of how both
features of the task environment and the dynamics of explo-
ration make some activities more fun than others.
Keywords: play, problem solving, motivation

Introduction
In 2022, the New York Times – one of the oldest newspapers

in the United States – paid $1 million USD to acquire Wordle,
a puzzle game where players guess a 5-letter word. Wordle
continues to be one of the most popular games in the Times
app. Yet a similar guessing game, Digits, was taken down
after just 4 months (Amlen, 2023). What explains why people
find some games enjoyable, and others forgettable?

The question of why people prefer some activities over oth-
ers has been a subject of extensive research across disciplines,
including psychology, education, economics, and human-
computer interaction. Classic theories proposed that specific
stimulus properties – novelty, complexity, or uncertainty –
evoke interest (Berlyne, 1960). Other work has documented
the motivating effects of achievement (Harackiewicz & El-
liot, 1993), optimal challenge (Czikszentmihalyi, 1990), or
increased opportunities for learning and exploration (Oudeyer
et al., 2007; Baranes et al., 2014; Brändle et al., 2023). Yet,
theoretical debates remain lively, and a unified and detailed
account of what makes some activities fun remains elusive
(Andersen et al., 2023; Chu & Schulz, 2020).

Research on human problem solving and planning pro-
vides formal tools for understanding sequential decision mak-
ing behavior in complex environments. People often con-
sider possible future states before taking action, and appear
to use mental simulation to evaluate different paths forward
(Newell, 1979). The degree to which people do look-ahead

Figure 1: Example Sokoban Puzzle

Figure 1: Example Sokoban puzzle. Players use arrow keys to con-
trol the green turtle and push diamonds around (diamonds cannot be
pulled). Dark blue tiles are solid walls that block movement. To
complete a puzzle, every diamond must be pushed onto a yellow
goal tile, such that all diamonds turn purple.

seems to be affected by both cognitive constraints and the
structure of the environment, with more extensive simulation
when errors are costly but exploration is cheap (Gureckis &
Markant, 2012; Dasgupta et al., 2018). More recently, these
trade-offs have been formalized using rational models that
weigh the computational costs of simulation against poten-
tial rewards, similar to how search algorithms like A* bal-
ance the cost of expanding nodes in a search tree against their
estimated value (Callaway et al., 2022). While initially de-
veloped to explain behavior in laboratory tasks rather than
naturally occurring playful behavior, these frameworks may
explain what makes some problems engaging: by being struc-
tured such that some planning is feasible and necessary, re-
quiring people to look ahead just enough that it is challeng-
ing, while staying within cognitive limits.

Games offer an ideal environment to apply these formal
tools in the study of fun. Like laboratory tasks, games of-
fer well-defined objectives in controlled environments where
it is possible to measure behavior at high resolution. How-
ever, games also have properties that make real-world prob-
lem solving enjoyable, including the satisfaction of discov-
ering clever solutions and the reward of acquiring mastery
over time. By studying how people approach games where
engagement is driven by intrinsic motivation, we can begin
to formalize the cognitive factors that make certain problems
more fun to solve than others.

Here, we explore the predictors of enjoyment in the
Sokoban environment (Fig. 1). Sokoban is a well-known
puzzle game first developed by Hiroyuki Imabayashi in 1981
(Sokoban Wiki, 2009). Each puzzle comprises a 2D gridworld
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with several boxes and just as many goal tiles. To complete
a puzzle, every box must be placed onto a goal tile. Play-
ers control a character in the environment and push one box
at a time. These simple rules create a vast array of puz-
zles, making Sokoban puzzles a popular domain for testing
models of planning and problem solving (Jarušek & Pelánek,
2010; Racanière et al., 2017; Schaa et al., 2024). In fact,
puzzles that are relatively small or even visually similar can
show wide variability in solution complexity and solve times,
ranging from a few seconds to more than an hour (Jarušek
& Pelánek, 2010). Thus, Sokoban offers a simple but ex-
pressive domain to explore variability puzzle-solving behav-
ior and enjoyment ratings. Further, Sokoban is a well-known
puzzle with a large collection of community-designed levels,
allowing us to examine natural variation in online communi-
ties alongside more controlled lab experiments.

We have two goals. The first is to understand how differ-
ences between puzzle levels impact puzzle enjoyment. We
examined this relationship in both an online corpus of 442
puzzles (Study 1), as well as a lab experiment (Study 2). Our
second goal is to explore the degree to which participants can
anticipate which puzzles will be more fun before attempting
it, and explore how these rapid appraisals might be impacted
by puzzle-solving practice using a pre-/post-test design. An
overview of our approach is outlined in Fig 2. Our experiment
and analysis code can be accessed at https://github.com/
cogtoolslab/fun-puzzles cogsci25

Study 1: Characterizing relationship between
puzzle features and enjoyment in the wild

We first sought to understand which aspects of a puzzle
layout predict enjoyment in real-world human data. To do
so, we use publicly available puzzle metadata from an online
game website where people create, play, and vote on puzzles
(SokobanOnline.com, 2011). For each puzzle in the dataset,

we calculated measures of visual complexity, solution com-
plexity, and enjoyment.

Methods
Dataset We obtained puzzles from the “Web Archive” list
available in December 2024, as these all follow classic
Sokoban rules without custom extensions (e.g., portals, mag-
nets). A total of 115,885 puzzles were available, but we focus
our analysis on puzzles with at least 200 attempts (n = 680).
We next excluded 254 puzzles that could not be solved by
the A* search algorithm within 1 million iterations Finally,
we included 16 additional puzzles with at least 100 attempts
from popular collections designed for novices, which we also
use in Study 2. The final dataset comprised 442 puzzles from
26 different authors, with a total of 4031 like or dislike votes.
Visual measures Each puzzle is laid out on a grid consist-
ing of wall, floor, and goal tiles, from which we computed
three key measures. First, we computed the total number
of boxes, which reflects how many subgoals must be com-
pleted. Puzzles ranged from 1 box to 11 boxes, with a median
of 3 boxes (SD = 1.39). Second, we measured puzzle area
as the total number of floor tiles (M = 26.11; SD = 14.10;
range = [3,217]). However, not all puzzles were equally
navigable: some consisted of large empty spaces, while oth-
ers were maze-like. Thus, we defined puzzle openness as
the ratio of puzzle area (minus the number of boxes), to the
number of wall tiles present. A higher value indicates more
open space to navigate or push boxes around, while a lower
value may suggest the map contains many inner walls or tight
corridors. Puzzle openness ranged from 13.33% to 55.67%
(M = 36.87%; SD = 42.60%).
Solution complexity We used the A* planning algorithm
(Hart et al., 1968; Todd et al., 2023) to solve each puzzle,
stopping at a maximum of 1 million iterations. In our A*
implementation, the search is guided by the minimum sum
of the Manhattan distances between each box and its closest
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Figure 3: Predictors of puzzle like rate in an online corpus of 460 puzzles. (A) Visual features (blue) were computed from the puzzle layout
and include puzzle area (the number of floor tiles), openness ((n f loor − nboxes)/(n f loor + nwalls)), and the number of boxes that must
be correctedly placed. Solution-based features (green) show the results of using the A* search algorithm to solve each puzzle. Steps per
box reflects length of best solution divided by number of boxes; search difficulty reflects number of model iterations before a solution
was achieved (max one million). Bars show Pearson correlations; asterisks indicate significant values at p < 0.05. (B) Relationship between
puzzle completion rate and like rate, computed over all attempts. Best-fit line shows predictions of quadratic model with 95% CI.

goal. This yielded model-based measures of solution com-
plexity (number of steps per box; M = 21.68; SD = 16.48;
range = [1,133]) and search difficulty (number of iterations
required; M = 86,938; SD = 179,160, range = [2,994570]).
We also defined puzzle completion rate as the proportion
of successful puzzle attempts (M = 69.51%, SD = 13.72%,
range = [5.81%,96.60%]).
Enjoyment measures Players can vote on each puzzle
with a like or dislike, which we transform into an enjoy-
ment measure by dividing total likes by the number of at-
tempts to obtain a like rate (M = 2.26%, SD = 0.96%,
range = [0.30%,6.01%]). When people react to a puzzle,
they typically give likes (M = 98%, SD = 4.4%, range =
[67%,100%]); only 30 puzzles have a like ratio below 90%.

Results
We first examined the association between like rate and

each computed puzzle feature using Pearson correlations
(Fig. 3A)1. A lower like rate was observed for larger puz-
zles (ρ(438) =−0.11, p = .01) and puzzles with more boxes
(ρ(433) =−0.33, p < .0001), though enjoyment was not re-
lated to the proportion of empty tiles (openness: ρ(414) =
0.88, p = .01). Puzzles that A* could solve in fewer itera-
tions also had a higher like rate (ρ(413) = 0.11, p = .02),
suggesting an overall preference for simpler puzzles. Like
rate was also higher for puzzles requiring more steps per box
(ρ(414) = 0.26, p < 0.0001).

We next considered the relation between enjoyment and the
probability of success. Puzzle like rate was not linearly pre-
dicted by puzzle completion rate (F(1,440) = 3.25, p = .07;
adjusted R2 = 0.0051). Including a quadratic term signifi-
cantly improved model fit (F(1,439) = 5.11, p = .02; see
Fig. 3B), suggesting that the most liked puzzles lay in a
sweet spot of difficulty. The highest like rate was estimated

1For each correlation analysis, we first removed high leverage points
that were three Cook’s distance away from the mean.

at 73% completion rate, which is close to the average puz-
zle completion rate (69.5%). However, the quadratic model
explained only a limited amount of variation in like rates (ad-
justed R2 = 0.014), so we caution against generalizing this
relationship beyond the present dataset.

While these relationships were robust, together they ac-
counted for only a small fraction of total variation. A lin-
ear regression model with all features accounted for just
under 10% of variation in like rates (adjusted R2 = 0.099;
F(7,434) = 7.94, p < .001), with the greatest proportion of
unique variance attributed to visual features alone (adjusted
R2 = .091).

Discussion
Across a large and diverse array of puzzles, we found that

puzzles with simpler visual features had higher like rates,
suggesting that salient surface-level properties may inform
people’s puzzle evaluation. Replicating prior work (Brändle
et al., 2024), we also found some evidence that puzzles with
medium difficulty elicited more enjoyment. Interestingly,
puzzles that require more steps per box had higher like rates.
Perhaps these puzzles afford longer durations of game play
and sustain longer engagement. As these are correlational
analyses, we refrain from making causal conclusions.

This data is valuable for capturing variation in puzzle de-
signs and people’s reactions in a naturalistic setting: on a
game website where people are, presumably, playing for fun.
However, we had no access to player-specific data, such as
their level of experience, how often they repeated a puzzle,
or how long they spent on each puzzle. Further, while indi-
vidual players can only like a puzzle once, we do not know
if they voted after their first attempt, or only after completing
it. This uncertainty about the data generation process hinders
inferring generalizable conclusions about the factors that im-
pact puzzle enjoyment. In Study 2, we ran an experiment to
investigate how such participant-specific and attempt-specific
factors might impact puzzle appraisals.



Study 2: Impact of puzzle-solving experience
on enjoyment

In Study 2 we investigate the impact of puzzle-solving ex-
perience on how people rate puzzles. First, we standardized
overall experience by imposing a time limit of 5 minutes per
puzzle. After completing a puzzle, or when the time was up,
participants rated how enjoyable the puzzle was on a scale of
1 to 10, thus providing more fine-grained appraisals than in
Study 1.

Second, we probed how participants might appraise puz-
zles just by looking using a binary comparison task. This al-
lowed us to study potential differences between participant’s
anticipated enjoyment and their self-reported enjoyment. In
addition, we used a pre-/post-test design to assess how these
appraisals may be impacted by puzzle-solving practice, for
example, whether judgments become more consistent with
post-attempt ratings or with ratings from other participants,
or whether a preference for harder puzzles emerges.

While our primary aim was to characterize sources of con-
sistency and variability in puzzle enjoyment ratings, we also
ran a control group of participants who judged puzzle diffi-
culty instead of enjoyment. This both provides a comparison
benchmark for assessing the reliability of puzzle ratings, and
also allows us to test if the U-shaped relationship between
task difficulty and enjoyment found in Study 1 generalizes to
this experimental context.

Methods
Participants We recruited 250 US adults from Prolific and
randomly assigned them to either an enjoyment (n=124) or
difficulty (n=126) rating condition. The study took about 50
minutes to complete and participants received $10 USD. An
additional 27 participants were excluded for incomplete test
trials (n=19), failing tutorial levels (n=6), or failing an atten-
tion check about their assigned condition (n=2).

Participants were relative novices, with most reporting no
prior experience with Sokoban puzzles (n=146 or 58%) and
the remainder having played Sokoban a few times (26%)
or several times (11%). A small group of participants self-
reported being very familiar with the game. Consistent with
this, a majority of participants found the study quite challeng-
ing (mean rating 3.86 on a scale of 1=Very Easy to 5=Very
Hard; 66% responding 4 or 5) with no differences across rat-
ing conditions.

Stimuli We identified puzzles from popular collections that
were recommended for novices. All puzzles contained 3
boxes on a grid size ranging from 4x4 to 7x7 tiles. To ensure
that participants would be able to complete at least some puz-
zles within 5 minutes, we only considered puzzles with an ob-
served solution rate of at least 50% and that required no more
than 99 moves to solve. We next sampled puzzles following
a 2x2x2 design using a median split on three variables: dif-
ficulty (corpus completion rate, cutoff: 73% solved), enjoy-
ment (corpus like rate; cutoff: 3.1%), and solution complexity
(length of shortest observed solution; cutoff: 48 steps). The
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Figure 4: (Study 2) Amount of variation in self-reported enjoy-
ment that is attributable to puzzle features. Y-axis show adjusted
R-squared values from linear mixed effects models with different
predictor terms, indicated on the X-axis. Noise ceiling shows maxi-
mal achievable R2, estimated from the observed between-participant
consistency in enjoyment ratings.

final stimuli comprised 24 puzzles: three sets of 8 puzzles,
such that each set followed the 2x2x2 design.
Procedure All participants first completed a tutorial with
videos explaining the game rules. To continue with the study,
participants had to solve 3 practice puzzles (two 2-box puz-
zles and one 3-box puzzle) that required between 5 to 17
steps. Next, participants completed three tasks in fixed or-
der: an initial puzzle comparison task (”Window Shopping”),
a main puzzle solving and rating task (”Puzzle Testing”), and
a final comparison task (Fig. 2). Each task comprised puz-
zles from a different stimuli set, with the set order counter-
balanced across participants.
Window Shopping task Participants were instructed to
“help us decide which puzzles seem more [difficult / enjoy-
able] at first glance”. This task included eight forced-choice
trials contrasting two puzzles. On each trial, one puzzle was
first displayed alone. After 10 seconds had passed, partici-
pants could click to reveal the second puzzle, which was dis-
played beside the original puzzle for at least another 10 sec-
onds. Trials ended when participants made a choice between
the two puzzles; the median time spent per trial was 28 sec-
onds.

Puzzle pairs were sampled from each stimuli set such that
any given participant would see each puzzle appear in two
comparison trials, with no repeated pairs. Overall, each puz-
zle appeared in 78 to 90 comparisons per condition and study
phase (initial/final).
Puzzle Testing task In this main phase of the study, partic-
ipants attempted 8 puzzles with 5 minutes allowed per puz-
zle. During a trial, participants could undo actions or restart
the puzzle as many times as they wished. After completing a
puzzle or reaching the time limit, participants rated the puzzle
on a 10-point scale (from 1:Not at all [enjoyable/difficult] to
10:Extremely [enjoyable/difficult]). All 8 puzzles were dis-
played in a gallery and participants could choose which puz-
zle to attempt next.

Results
Enjoyment ratings were just as reliable as difficulty rat-
ings We observed a wider spread of enjoyment ratings
(mean SD across puzzles = 2.80) than difficulty ratings (SD=
2.37; t(23) = 3.07, p = .005). This was consistent with the



Figure 5: Predictors of self-reported enjoyment in Study 2. (A) The correlation between average enjoyment and difficulty judgments
(between-subjects). Points show average self-reported enjoyment and difficulty for each puzzle; error bars show 95% bootstrapped CIs.
(B) Model fits (AIC value) from fitting Linear Mixed Effects models with different combinations of features. Each column represents one
model. The left-most column shows the null model with only random intercepts for participant and puzzle. Puzzle features included visual
features (total area, layout openness) and solution complexity (average completion rate from Study 1, steps needed, and search complexity).
(C) Trial-level enjoyment ratings reflect an interaction between total number of steps taken (x-axis) and whether participants solved that
puzzle. Dots show responses on each trial, with color indicating success (blue) or failure to solve within allotted 5 minutes (red). Some
vertical jitter has been added to reduce overplotting. Lines show predictions of the full regression model (right most column of panel B),
marginalizing over puzzle features.

overall sentiment that Sokoban puzzles were difficult: 65%
of trials in the difficulty condition received a score of 8 to 10
whereas enjoyment ratings were more uniformly distributed
across the full scale.

Nonetheless, we found that both enjoyment and difficulty
ratings were highly reliable across participants. We defined
reliability as the (Spearman-Brown Formula corrected) cor-
relation between split-halves of participants using a permu-
tation approach (Parsons, 2021) with 10,000 random splits
within each condition and stimuli set. The mean consistency
in average puzzle ratings across participants for enjoyment
was rSB = .86, 95% CI = [0.75,0.92]; for difficulty, rSB = .82,
95% CI=[0.69,0.89], indicating strong internal consistency.

Visual features and solution complexity did not predict
self-reported enjoyment Across puzzles, we found that av-
erage enjoyment ratings were not strongly predicted by ei-
ther visual features (i.e., puzzle area and openness) or solu-
tion complexity (i.e., solution length and number of search
iterations required). Figure 4 shows adjusted R-squared val-
ues from linear mixed effects (LME) models with random ef-
fects for participant and puzzle, and fixed effects for visual
features (R2 = .005), solution complexity (R2 = .010), and
average completion rate (R2 = .051). Incorporating all puz-
zle features improves model fit (R2 = .073), but is still far
below the maximal achievable explanatory power estimated
from split-half reliability (R2 = .73). Thus, other participants
are much better predictors of how much someone will enjoy
a puzzle, compared to puzzle-specific features.

Participants rate difficult puzzles as less enjoyable Next,
we examine how self-report measures correspond with mea-
sures of puzzle enjoyment and difficulty in Study 1. First, we
examined the relationship between puzzle enjoyment and dif-
ficulty (Figure 5A). Unlike the quadratic relationship found
in Study 1, here we found a strong linear relationship (Pear-

son’s ρ(22) = −.947, p < .001): puzzles rated as more dif-
ficult were rated (by different participants) as less enjoyable.
Consistent with this, we found that observed puzzle comple-
tion rates from Study 1 significantly predicted both average
difficulty ratings (Pearson’s ρ(22) = −0.50, p = .013) and
enjoyment ratings (Pearson’s ρ(22) = 0.48, p = .017).

Unexpectedly however, self-reported enjoyment ratings
were not monotonically associated with corpus like rates
(Spearman’s ρ =−.032, p = .88) nor with the raw number of
likes (Spearman’s ρ = .33, p = .33). This result is consistent
with the possibility that enjoyment ratings may be strongly
impacted by task context (e.g., total time allowed, whether
information about other players’ outcomes are available) or
aspects of an individual participant’s puzzle-solving experi-
ence. We test this latter possibility next.

Puzzle-solving traces account for significant variability in
self-reported enjoyment As a first step towards accounting
for variability in enjoyment ratings across individual trials,
we focus on two high-level metrics of puzzle-solving behav-
ior: whether participants successfully completed the puzzle,
and the total number of steps taken throughout the attempt.
As before, we constructed LME models with random inter-
cepts for participants and puzzles.

Fig. 5B shows AIC values for models with different fixed
effects. Our base model includes all puzzle-specific visual
and solution-based features. Including fixed effects of steps
taken and success improved model fit, with success contribut-
ing the majority of improved predictive power. Including an
interaction between success and steps taken further improves
model fit (χ2(1) = 39.3, p< .001). Fig. 5C shows model pre-
dictions for this interaction effect: When participants solve a
puzzle, they report greater enjoyment when they attempted
fewer steps in total (including repeated attempts). However,
when participants did not solve a puzzle, having attempted



more steps predicts greater self-reported enjoyment.
How might practice change which puzzles people think
will be more fun? We analyzed responses on the Window
Shopping task by transforming participants’ binary choices
into ELO scores. This is a common approach for assigning
skill scores to winners and losers in head-to-head matches,
and captures how likely a puzzle will be selected in a new
comparison against another randomly selected puzzle. We
use the R package EloChoice (Clark et al., 2018) to compute
participant-specific ELO scores across 10,000 permutations
of trial order, before aggregating across participants to obtain
a puzzle-specific ELO score for each study phase and rating
condition.

One way that puzzle appraisals may change from pre- to
post-test is that choices can become more consistent across
different participants. We found no evidence for this: split-
half reliability for ELO scores ranged from 0.31 to 0.56, with
no differences of condition, study phase, or stimuli set. This
relatively low consistency score is perhaps unsurprising given
that visual features (e.g., puzzle area or openness) predicted
less than 1% of variance in self-reported enjoyment.

Another possibility is the factors shaping participants’
choices may change after practice. For example, participants
may begin to prefer harder puzzles. While neither pre-test
nor post-test ELO scores were significantly correlated with
average puzzle completion rates or other measures of, we
observed increased association between enjoyment and diffi-
culty ELO scores as the study progressed (see Fig. 6). Antic-
ipated enjoyment and difficulty was not correlated at pretest
(Pearson’s ρ =−0.02, 95% bootstrapped CI = [−0.27,0.28])
but was positively correlated at post-test (Fig. 6; Pearson’s
ρ = 0.61, 95% bootstrapped CI = [0.31,0.81]), reflecting
a significant increase (bootstrapped 95% CI for difference:
[0.19,0.98]).
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General Discussion
Intuitions about task enjoyment pervades everyday deci-

sions and actions. Yet, the information and computations

people use to make such appraisals are not well understood.
Here, we combined a natural dataset and an experimental
study to chart sources of consistency and variability in en-
joyment ratings.

We focused on enjoyment in Sokoban, a puzzle game with
simple rules yet vastly complex solutions. Both visual fea-
tures and solution complexity predicted the “like rate” across
puzzles in the online dataset (Study 1). Specifically, puzzles
with greater enjoyment were visually smaller and more easily
solved by a search algorithm. In Study 2, we analyzed par-
ticipant’s self-reported enjoyment immediately after attempt-
ing a puzzle. We found that trial-level exploration accounted
for significant variability in enjoyment ratings. On success-
ful attempts, people reported greater enjoyment when they
took fewer moves. However, for unsuccessful attempts, hav-
ing made more moves was associated with greater enjoyment.

While informative, these results explain only a small
amount of variation in puzzle enjoyment relative to the
between-participant agreement observed in Study 2. To make
progress on this predictive gap, future work should go be-
yond the high-level summary statistics used (i.e., success or
number of steps taken) to examine other ways that puzzle at-
tempts differed both within and across participants, such as
how broadly they explored different actions and what search
strategies they use. For example, recent work suggests that
more expert game play can be modeled with a greater search
depth (van Opheusden et al., 2023). Computational models
thus offer a fruitful way to better understand individual dif-
ferences in how people attempt and evaluate puzzles.

Another open question is what inferences third-party ob-
servers can make about a player from how they approach a
puzzle. For example, can observers reliably infer a players’
enjoyment, frustration, or competence? The ability to notice
such psychological states may be especially important in col-
laborative and pedagogical contexts, such as choosing what
hints to give or which puzzles to recommend next.

As an exploratory measure, participants in Study 2 also
judged which of two puzzles seem more enjoyable from brief
viewing. These responses were not as reliable as post-attempt
ratings, and stands in contrast to recent work finding that peo-
ple can quickly evaluate how fun a variety of simple board
games will be (Zhang et al., 2024). This discrepancy may be
due to differences in game complexity and study design: Our
participants made head-to-head matches in about 20 seconds,
while participants in (Zhang et al., 2024) had up to a minute to
rate each game and had access to a scratch pad. This compar-
ison suggests that reducing the cognitive cost of generating
and reasoning about future states may support more accurate
task appraisals. To test this hypothesis, future work can in-
vestigate how varying the ease of forward simulation (e.g.,
providing roll outs) impacts people’s anticipated enjoyment.

We look forward to these lines of future research that will
help us better understand how people both appraise past ex-
periences and anticipate how rewarding future experience can
be.
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