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Abstract
Visual modes of communication are ubiquitous in modern life—from maps to data plots to political cartoons. Here, we
investigate drawing, the most basic form of visual communication. Participants were paired in an online environment to
play a drawing-based reference game. On each trial, both participants were shown the same four objects, but in different
locations. The sketcher’s goal was to draw one of these objects so that the viewer could select it from the array. On “close”
trials, objects belonged to the same basic-level category, whereas on “far” trials objects belonged to different categories. We
found that people exploited shared information to efficiently communicate about the target object: on far trials, sketchers
achieved high recognition accuracy while applying fewer strokes, using less ink, and spending less time on their drawings
than on close trials. We hypothesized that humans succeed in this task by recruiting two core faculties: visual abstraction, the
ability to perceive the correspondence between an object and a drawing of it; and pragmatic inference, the ability to judge
what information would help a viewer distinguish the target from distractors. To evaluate this hypothesis, we developed
a computational model of the sketcher that embodied both faculties, instantiated as a deep convolutional neural network
nested within a probabilistic program. We found that this model fit human data well and outperformed lesioned variants.
Together, this work provides the first algorithmically explicit theory of how visual perception and social cognition jointly
support contextual flexibility in visual communication.

Keywords Drawing · Social cognition · Perception · Deep learning · Probabilistic models

Introduction

From ancient etchings on cave walls to modern digital
displays, the ability to externalize our thoughts in visual
form lies at the heart of key human innovations (e.g.,
painting, cartography, data visualization) and forms the
foundation for the cultural transmission of knowledge
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(Tomasello 2009; Donald 1991). Perhaps the most basic
and versatile visualization technique is drawing, the earliest
examples of which date to at least 40,000 years ago
(Hoffmann et al. 2018; Aubert et al. 2014), and which
can yield images ranging from photorealistic renderings to
schematic diagrams. Even in the simple case of sketching
an object in the world, there are countless ways of depicting
that object, depending on the context. For instance, an
automotive engineer formulating a new car design may
invest considerable effort to produce detailed drawings that
convey fine-grained information about the car’s body shape,
which impacts how aerodynamic it will be. On the other
hand, a cartoonist drawing a street scene may only need a
few strokes to sketch a car in the background of the scene.
How do drawings, despite spanning such a broad range of
appearances, reliably convey their intended meaning?

On the one hand, recent work in computational vision
suggests that the identity of an object depicted in a drawing
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can be derived from its visual properties alone (Fan et al.
2018). These results are consistent with evidence from
other domains, including developmental, cross-cultural, and
comparative studies of drawing perception. For example,
human infants (Hochberg and Brooks 1962), people living
in remote regions without pictorial art traditions and without
substantial contact with Western visual media (Kennedy and
Ross 1975), and higher non-human primates (Tanaka 2007)
are able to recognize line drawings of familiar objects,
even without prior experience with drawings. Together,
these findings suggest that the ability to perceive the
correspondence between drawings and real-world objects
arises from a general-purpose neural architecture evolved
to handle variation in natural visual inputs (Sayim and
Cavanagh 2011; Gibson 1979).

On the other hand, influential work in philosophy has
emphasized the role of cultural and social context in
determining how drawings denote objects (Goodman 1976).
This perspective is consistent with substantial variation
in pictorial art traditions across cultures (Gombrich 1989,
1969) and the existence of culturally specific conventions
for encoding meaning in pictorial form (Boltz 1994; Allen
2000). Further support for the importance of social context
has also come from recent laboratory studies of visual
communication, which have found that pairs of interacting
participants can produce drawings that are referentially
meaningful to their partner in context, even when these
drawings do not strongly resemble any particular real-world
referent out of context (Garrod et al. 2007; Fay et al. 2010;
Galantucci 2005).

Towards reconciling these perspectives, the current paper
explores the hypothesis that visual information and social
context jointly determine how drawings convey meaning. To
evaluate this hypothesis, we investigated how the drawings
people produce varied across communicative contexts, and
found that people adapted their drawings accordingly,
producing detailed drawings when necessary, but simpler
drawings when sufficient. To explain these findings, we
developed a computational model of visual communication
that embodied two core faculties: visual abstraction, the
capacity to judge the correspondence between a real-world
object and a drawing of it; and pragmatic inference, the
ability to judge what information is not only valid to include
in a drawing, but also relevant in context (Goodman and
Frank 2016; Grice 1975; Abell 2009). This model was
instantiated as a deep convolutional neural network visual
encoder nested within a probabilistic program that inferred
which drawings would be most informative in context. We
found that our full model fit the data well and outperformed
lesioned variants, providing a first algorithmically explicit
theory of how visual perception and social cognition jointly
support contextual flexibility in visual communication.

Results

Effect of Context Manipulation on Communication
Task Performance

To investigate visual communication in a naturalistic yet
controlled setting, we employ a drawing-based reference
game paradigm. This reference game involves two players:
a sketcher who aims to help a viewer pick out a target object
from an array of distractor objects by representing it in a
sketch. Such games, which have long provided a source
for intuitions in the philosophy of language (Wittgenstein
1953; Lewis 1969), have also proven to be a valuable
experimental tool for systematically eliciting pragmatic
inferences about language use in context (Goodman and
Frank 2016; Kao et al. 2014; Goodman and Stuhlmüller
2013; Frank and Goodman 2012), especially the ability of
speakers to compose utterances that are informative (Grice
1975; Wilson and Sperber 1986) yet parsimonious (Zipf
1936) during verbal communication. Here, we generalize
this methodology to understand the role of pragmatic
inference during visual communication.

In our experiment, participants (N=192) were paired in
an online environment and communicated with their partner
only via a drawing canvas (Fig. 1a). In each trial, both
participants were shown a set of four real-world objects,
but object locations were randomized for each participant
so that they could not use object location information to
solve the task. The sketcher’s goal on each trial was to draw
one of these objects—the target—so that the viewer could
pick it out from the array. There were 32 objects in total
belonging to four basic-level categories (i.e., bird, car, chair,
dog) that were rendered in the same three-quarter pose,
under identical illumination, and on a gray background, so
participants could not use pose, illumination, or background
information to distinguish them. Each object was randomly
assigned to exactly one set of four objects, and each set of
four objects was presented four times each, such that each
object served as the target exactly once. Across trials, the
similarity of the distractors to the target was manipulated,
yielding two types of communicative context that appeared
in a randomly interleaved order: close contexts, where the
target and distractors all belonged to the same basic-level
category, and far contexts, where the target and distractors
belonged to different basic-level categories (Fig. 1b). We
predicted that while sketchers would be generally successful
at conveying the identity of the target, their sketching
behavior would systematically differ between the two
contexts. Specifically, we predicted that sketchers would
invest more time and ink in producing their sketches in close
contexts, but still produce sufficiently informative sketches
with less time and ink in far contexts (Fig. 2).
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Fig. 1 a Communication task. Participants were paired in an online
environment to play a drawing-based reference game and assigned the
roles of sketcher and viewer. On each trial, the sketcher’s goal was to
draw one of these objects so that the viewer could distinguish the target
from three distractor objects. b Context manipulation. Distractor simi-
larity to target was manipulated across two context conditions: in close

contexts, the target and distractors belonged to the same basic-level
category, while in far contexts, the target and distractors all belonged to
different basic-level categories. c Recognition task. Naive participants
were presented with a randomly sampled sketch from the communi-
cation experiment and an array containing all 32 objects used in the
experiment, and were instructed to identify the best-matching object

Consistent with our prediction, we found that viewers
were highly accurate overall at identifying the target from
the sketches produced (proportion correct, 93.8%; 95%
CI, [92.7%, 94.8%], estimated by bootstrap resampling
participants). Moreover, we found that sketchers spent less
time (far, 13.7s; close, 30.3s, p<0.001), applied fewer
strokes (far, 13.5; close, 8.03; 95% CI for difference, [3.75,
7.90], p<0.001), and used less ink (proportion of canvas
filled; far, 0.042; close, 0.054; 95% CI for difference,
[0.01, 0.014], p<0.001) to produce their sketches in the far
condition than in the close condition (Fig. 3a–c). Despite
the relative sparsity of sketches in the far condition, viewers

were near ceiling at identifying the target on these trials
(far, 99.7%; 95% CI, [0.993, 0.999]; close, 87.9%, 95% CI,
[0.858, 0.899], Fig. 3d) and took less time to make these
decisions than on close trials (far, 6.32s; close, 8.32s; 95%
CI for difference, [1.251, 2.748], Fig. 3e).

Effect of Context Manipulation on Sketch
Recognizability

A natural explanation for these findings is that the two
context conditions differed in how much information
was required to identify the target. Specifically, sketchers

a b cobjects close far

Fig. 2 a Object stimuli. b Example sketches produced in close context condition. c Example sketches produced in far context condition
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Fig. 3 a–c Mean number of strokes, amount of ink, and time spent
producing sketches in each context condition. d–e Target identifi-
cation performance in context during communication task. f Target

identification performance out of context during recognition task.
Error bars reflect 95% confidence intervals

invested greater time and ink in close contexts to strengthen
the correspondence between their sketch and the target
object, out of necessity, while they could still succeed
in far contexts with sketches that were less costly to
produce. To evaluate this possibility, we recruited another
group of naive participants (N=112) to perform a sketch
recognition task that yielded estimates of how strongly each
sketch corresponded to every object in the communication
experiment. On each trial of this recognition experiment,
participants were presented with a sketch and an array
containing all 32 objects, and were instructed to identify
the object that best matched each sketch from the array
(Fig. 1c). Across trials, sketches were randomly sampled
from the original communication experiment such that no
two sketches produced by the same participant appeared in
a single recognition experimental session. Consistent with
our hypothesis, we found that close sketches were matched
with their corresponding target object more consistently
than far sketches were (close, 54.2%; far, 37.5%; Z=14.1,
p <0.001), although sketches from both context conditions
were successfully matched at rates greatly exceeding chance
(ps < 0.001).

Computational Model of Contextual Flexibility
in Visual Communication

Our empirical findings suggest that sketchers spontaneously
modulate the amount of information they convey about
the target object according to the communicative context.
Such contextual flexibility argues against the notion that
visual communication is constrained exclusively by the
appearance of the target object, but instead that it is
systematically influenced by contextual information that
is shared between the sketcher and viewer. Moreover, it
suggests an analogy to how shared context influences
what people choose to say during verbal communication, a
key target of recent advances in computational models of

pragmatic inference in language use (Frank and Goodman
2012; Goodman and Stuhlmüller 2013; Franke and Jäger
2016; Bergen et al. 2016). Leveraging these advances,
we propose that human sketchers determine what kind
of sketch to produce in context by deploying two main
faculties: visual abstraction, which here refers to the ability
to judge how well a sketch evokes a real object, and
pragmatic inference, which here refers to the ability to
judge which sketches will be sufficiently detailed to be
informative about the target object in context, but no more
detailed than necessary. To test this proposal, we developed
a computational model of the sketcher that embodies
both visual abstraction and pragmatic inference, and was
instantiated as a deep convolutional neural network nested
within a probabilistic program. Constructing such a model
allowed us to use formal model comparison to evaluate the
contribution of each component for explaining our empirical
findings, as well as make quantitative predictions about
visual communication behavior in novel contexts.

Defining Communicative Utility of Sketches

We define the sketcher, S, to be a decision-theoretic agent
that produces sketches, s, of the target proportional to
their communicative utility, which is a function of a sketch
and a context: U(s, O). In our experiment, a context is
defined as: O = {t, D}, where t is the target object and
D is a set of three distractor objects, D = {d1, d2, d3}.
When deciding which sketch to produce, the utilities of
each sketch are assumed to be normalized over the set of
producible sketches via the softmax function:

S(s|O) = exp[U(s, O)]
∑

i exp[U(si, O)] (1)

In principle, the space of all producible sketches is infinite
and continuous, leading to an intractable sum. In practice,
we assume that the sketcher model chooses among a
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large but finite set of sketches: those actually produced by
participants in our experiment.

We first introduce the utility function for our proposed
pragmatic sketcher, Sprag, and then consider lesioned
variants for comparison. This utility function formalizes the
notion of pragmatic inference as a balance between how
informative a more detailed sketch would be in context with
how costly it would be to produce such a detailed sketch. It
consists of two terms: an informativity term and a cost term.

The sketcher judges a sketch’s informativity to be
a mixture of two quantities: one reflecting its absolute
resemblance to the target and the other its relative
diagnosticity in the presence of particular distractors (see
Fig. 4b). Resemblance is determined by how strongly a
sketch s corresponds to the target object t , i.e. sim(s, t),
which inherently relies on some form of visual abstraction
in order to compute. In our first set of modeling
experiments, we estimate sim(s, t) empirically as the
proportion of trials in the recognition experiment on which
the target object was matched to the sketch. Later, we
present a model of visual abstraction, instantiated as a neural
network capable of predicting sim(s, t) on heldout data.

Diagnosticity is determined by how strongly a sketch
s corresponds to the target object t , relative to the other
objects in context. Owing to its dependence upon con-
textual information, diagnosticity relies on both pragmatic
inference and visual abstraction to compute. Formally, diag-
nosticity is defined by the natural log probability that a
simulated viewer agent, V , would select the target object

given the sketch and all objects in context, lnV(t |s,O). The
simulated viewer V , in turn, is assumed to select the tar-
get object proportional to the correspondence between the
sketch and the target, sim(s, t), normalized by the sum of
correspondences between the sketch and all four objects in
context, again via the softmax function:

V(t |s,O) ∝ exp{α · sim(s, t)}
∑4

i=1 exp{α · sim(s, oi)}
(2)

Here, i indexes each object o ∈ O, and α is a scaling
parameter that determines how strongly the simulated
viewer’s decision policy favors the highest-utility sketch. As
α → ∞, the simulated viewer is more likely to choose
the object with highest perceptual correspondence to the
sketch. Intuitively, this means that the viewer is more likely
to pick the correct object when the sketch corresponds more
strongly to the target than to the distractors.

To combine the resemblance and diagnosticity terms
into a single informativity value, we introduce a weight
parameter, wd , that interpolates between them:

I (s,O) = wd · lnV(t |s,O) + (1 − wd) · sim(s, t). (3)

Combining these terms captures the intuition that a
communicative sketcher seeks to produce a sketch that both
resembles the target object and distinguishes the target from
the distractors.

Finally, we define a sketch’s cost, C(s), to be a
monotonic function of the amount of time taken to produce

a b

Fig. 4 a Schematic containing an example context and two candi-
date sketches under consideration by the sketcher, S . The thickness
of each blue line reflects the absolute strength of the correspondence
between a candidate sketch and object in context (resemblance). The
thickness of each red line reflects the relative strength of the corre-
spondence between a candidate sketch and each object, compared to
its correspondence to the other objects in the context (diagnosticity). A
sketch’s informativity was hypothesized to depend on both its resem-
blance and diagnosticity. The sketcher expects the viewer, V , given
the sketch and context, to select the target object proportional to the
strength of the correspondence between the sketch and target object.

All else equal, the sketcher is assumed to prefer sketches that are less
costly to produce. b Architecture of the visual encoder used to predict
the correspondence between sketches and objects, which consists of a
base convolutional neural network and fully connected “adaptor” neu-
ral network. The parameters of the base neural network are trained on
separate data and frozen, whereas the parameters of the adaptor neu-
ral network are trained on subsets of our experimental data. First, two
identical branches of the base neural network are applied to a sketch
and object to extract a feature vector for each image. Next, these fea-
ture vectors are concatenated and passed through the adaptor neural
network to yield a sketch-object correspondence score
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it, linearly transformed to lie in the range [0, 1]. Putting
these terms together, we have the full utility:

USprag(s, O) = wi · I (s, O) − wc · C(s) (4)

where wi and wc are independent, nonnegative scaling
parameters that are applied to the informativity and
cost terms, respectively. These parameters determine how
strongly each term contributes to the overall utility of
the sketch. This model contains four latent parameters:
one each on informativity (wi) and cost (wc), one that
balances between diagnosticity and resemblance within the
informativity term (wd ), and one that tracks the optimality
of the simulated viewer’s decision policy (α). We inferred
these parameters from our data via Bayesian data analysis
(see the “Materials and Methods” section).

Evaluating Contribution of Pragmatic Inference

We hypothesized that a pragmatic sketcher model that
is sensitive to both context and cost would provide a
strong fit to human sketch production behavior, as well as
outperform lesioned alternatives lacking either component.
To test this hypothesis, we compare the full pragmatic
model, (Sprag), with two nested variants with different utility
functions: a context-insensitive sketcher, Ssim, in which the
diagnosticity term is removed (i.e., wd=0), leaving only
the resemblance component in the informativity term; and
a cost-insensitive sketcher, Snocost, in which the cost term is
removed (i.e., wc = 0), leaving only the full informativity
term.

Our goal was to evaluate how well each model could
produce informative sketches and appropriately modulate
its behavior according to the context condition, and not

necessarily to reproduce exactly the same sketch a particular
participant had on a specific trial. As such, we collapsed
across all sketches of a given object produced in a given
context condition, yielding 64 “prototype” sketches for each
object-context category characterized by the average cost
and sketch-object correspondence values in that category.
For example, the prototypical “close basset” sketch is
characterized by the average cost and object correspondence
values across all basset sketches produced in close contexts.
Decisions by the sketcher model were generated at the
same level of granularity, in the form of a probability
distribution over these 64 prototype sketches. To generate
these decisions, first we employed Bayesian data analysis to
infer a posterior distribution over the four latent parameters
in the model (wi , wc, wd , α). Next, we presented each model
with exactly the same set of contexts that were presented
to human sketchers in the communication experiment, and
evaluated the posterior predictive probabilities that each
model assigned to sketches in each object-context category,
marginalizing over the posterior distribution over latent
parameters. We conducted these inference and evaluation
steps independently on five balanced splits of the dataset,
providing an estimate of reliability and permitting side-by-
side comparison with subsequent modeling results using
the same splits for cross-validation (see the “Evaluating
contribution of visual abstraction” section).

We found that the full model, Sprag, provided a much
better fit to human behavior than the context-insensitive
variant, Ssim (median log Bayes factor [BF] across cross-
validation folds = 16.1; see Table 1), and the cost-
insensitive variant, Snocost (BF = 9.54). To gain further
insight into the functional consequences of each lesion,
we investigated three aspects of each model’s behavior: (a)

Table 1 Log Bayes factors (BF) for comparisons between full and lesioned model variants (columns) for each cross-validation fold (rows)

Human recog Visual encoder

Split Context vs. no-context Cost vs. no-cost Context vs. no-context Cost vs. no-cost High vs. mid High vs. low

1 18.0 11.9 44.5 2.70 105 282

2 8.46 9.89 20.9 −0.33 92.5 242

3 19.2 8.95 31.9 1.98 94.8 257

4 13.4 9.54 8.35 −0.67 93.4 248

5 16.1 7.92 28.1 5.99 114 269

Median 16.1 9.54 28.1 1.98 94.8 257

Log-BFs>0 indicate greater evidence for the full model than the lesioned variant. Columns under the human recog header contain comparisons
between model variants that used empirical estimates of perceptual correspondence based on human sketch recognition behavior. Columns under
the visual encoder header contain comparisons between model variants that used a deep convolutional neural network visual encoder, trained in
a five-fold cross-validated manner using human sketch recognition behavior. The context vs. no-context columns includes comparisons between
context-sensitive and context-insensitive variant; the cost vs. no-cost columns includes comparisons between cost-sensitive and cost-insensitive
variant; the high vs. mid column includes comparisons between model variants using a high adaptor vs. mid adaptor in a context/cost-sensitive
model; and the high vs. low column includes comparisons between model variants using a high adaptor vs. low adaptor in context/cost-sensitive
model
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sketch retrieval: the ability to assign a high absolute rank to
the target sketch category in context, out of the 64 object-
context alternatives; (b) context congruity: the ability to
consistently assign a higher rank to the context-congruent
version of the target object over the context-incongruent
version; and (c) cost modulation: how consistently a
model produced costlier sketches than average in the close
condition, and less costly sketches than average in the far
condition, mirroring human behavior.

We found that in general, sketch retrieval performance
was high for all three model variants (target rank
95% CI: pragmatic = [1.43, 1.50], context-insensitive
= [1.54, 1.60], cost-insensitive = [1.55, 1.60]) (Fig. 5a,
left). This shows that all three model variants were
highly accurate at retrieving a sketch of the correct
object, with both close and far versions providing a better
match than any of the other sketches. However, only
the pragmatic sketcher was able to reliably produce the
sketch appropriate for the context condition more frequently
than would be predicted by chance (95% CI proportion,
[0.571, 0.620]; Fig. 5b, left); neither the context-insensitive
nor the cost-insensitive variants displayed this context

congruity (95% CI: context-insensitive = [0.478, 0.525],
cost-insensitive = [0.498, 0.501]). We observed that the
lack of context congruity in the lesioned variants was
attributable to an overall bias towards close sketches, which
are highly informative in absolute terms, and thus higher
in communicative utility if the distractors or sketch cost is
ignored.

Moreover, only the pragmatic sketcher produced costlier
sketches than average in the close condition (95% CI
normalized cost, [0.205, 0.218] vs. grand mean cost =
0.196; Fig. 5c, left), and less costly sketches than
average in the far condition (95% CI, [0.175, 0.180]).
The context-insensitive variant is inherently unable to
modulate the cost of the sketches it produces by context
condition, and thus was no more or less likely to select a
costlier, more diagnostic sketch on a close trial (95% CI,
[0.187, 0.194]) than a far trial (95% CI, [0.187, 0.192]),
and preferred slightly less costly sketches overall. While
the cost-insensitive variant did exhibit cost modulation by
context, because it ignores their cost, it preferred costlier
sketches overall in both close (95% CI, [0.229, 0.241]) and
far contexts (95% CI, [0.214, 0.220]). Nevertheless, this

a b c

Fig. 5 Sketch production behavior by model variant. A green disc indi-
cates that a given model is context/cost sensitive; a red “X” indicates
the lack of context/cost sensitivity. Results in the left-hand region of
each panel (white background) reflect model predictions when using
empirical estimates of sim(s, o) based on human sketch recognition
behavior. Results in the right-hand region (gray background) reflect
model predictions when using variants of the visual encoder that rep-
resented sketches and objects at varying levels of visual abstraction
(i.e., high, mid, low). All results reflect average model behavior on test
data across five cross-validation folds. Error bars represent 1 s.e. for
this average estimate, found by applying inverse-variance weighting
on individual confidence intervals from each train-test split. a Rank
of target sketch in list of 64 object-context categories, ordered by
the probability assigned by each model. Dashed line reflects expected
target rank under uniform guessing. Distribution of target rank
scores across models suggest that high-quality estimates of sim(s, o)

are critical for strong performance. b Proportion of trials on which
each model assigned a higher rank to the context-congruent sketch
of the correct object than the context-incongruent version of the cor-
rect object. Dashed line reflects expected behavior under indifference
between the two versions of the sketch. Only models above this line
show consistent and appropriate modulation of sketch production by
context. c Normalized time cost of sketches produced by each model.
Predicted sketch cost on each trial computed by marginalizing over
probabilities assigned to each sketch category. Darker bars reflect
behavior in the close condition; lighter bars the far condition. Dashed
line indicates the average cost of sketches in the full dataset; bars below
this line reflect a preference for sketches that are less costly than aver-
age, bars above this line for sketches that are costlier than average.
Only models that span this dashed line match the pattern of contextual
modulation of sketch cost displayed by human sketchers
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cost-insensitive variant still produced consistently costlier
sketches in close contexts than in far contexts. This can
be understood as having been driven by the remaining
diagnosticity component of the informativity term. Because
the cost-insensitive variant still places a higher utility on
sketches that are highly diagnostic, it is still biased to
produce costly but diagnostic sketches in close contexts.
By contrast, in far contexts, close and far sketches may
be similarly diagnostic, and thus the model produces a
mixture of these sketch types. Together, these results
suggest that both context and cost sensitivity are critical
for capturing key aspects of contextual flexibility in human
visual communication.

Evaluating Contribution of Visual Abstraction

Having established the importance of pragmatic inference,
we next sought to evaluate the contribution of visual
abstraction. Such evaluation requires an encoding model
that captures how abstract perceptual information is
extracted from raw visual inputs across successive stages
of visual processing. Our approach to modeling visual
abstraction is grounded in the neural computations that
support robust visual object recognition in higher primates.
These computations are carried out by a set of hierarchically
organized brain regions known as the ventral visual stream
(Malach et al. 2002; Rolls 2001). Across the ventral
stream, simple visual features are transformed across
successive levels of the hierarchy to support readout of more
abstract visual properties (e.g., object identity). Recent work
has found deep convolutional neural networks (DCNN),
optimized to perform challenging object recognition tasks,
to provide a strong computational framework for modeling
these computations (Yamins et al. 2014; Güċlü and
van Gerven 2015). Specifically, model activations in
successive layers of DCNN models have been found to
be quantitatively predictive of neural firing patterns in
successive regions along the ventral stream (Yamins et al.
2014). Especially relevant to the current study, higher-
layer representations have also been found to capture more
abstract perceptual information in drawings (i.e., intended
category) than lower-layer representations (Fan et al. 2018).

Informed by this prior work, we hypothesized that
higher-layer representations of a DCNN would provide
a stronger basis for predicting human judgments of the
perceptual correspondence between a sketch and object
than would representations in lower layers. To evaluate this
hypothesis, we compared DCNN-based encoding models
that varied only in depth, and thus the degree of visual
abstraction they achieve prior to the final step of predicting
the perceptual correspondence between a sketch and object.

Each encoder variant consists of two functional compo-
nents: a base visual encoder network, B, and an adaptor
network, A: sim(s, o) = A(B(s, o)). For the base encoder,
we employ a widely used and high-performing deep con-
volutional neural network architecture, VGG-19, pretrained
to recognize objects from the Imagenet database, whose
parameters remain frozen (Simonyan and Zisserman 2014;
Deng et al. 2009). We then augment the pretrained feature
representation of the base encoder with a shallow adaptor
network, which is trained to predict the perceptual corre-
spondence between specific sketch-object pairs. The reason
we train an adaptor network is that although prior work has
shown that representation of object categories converges
for sketches and photos at higher layers in DCNN models
trained only on photos (Fan et al. 2018), additional supervi-
sion can substantially improve the accuracy of predictions
involving comparisons between sketches and photos at the
instance level (Sangkloy et al. 2016).

Complex transformations applied by successive layers
of VGG-19 are required to capture human behavior. To
evaluate the importance of the greater visual abstraction
available at higher layers of VGG-19, we compare adaptor
networks that intercept VGG-19 image representations at a
lower, middle, and higher layer.

Each adaptor network was trained to predict the
empirical estimates of sketch-object correspondence from
the recognition experiment, and evaluated on held out data
in a 5-fold cross-validated manner using the same splits as
in the previous section.

Consistent with our hypothesis, we found that a
pragmatic sketcher model employing high-level features
provided a substantially better fit to the data than one
using mid-level features (high vs. mid BF, 94.8) or low-
level features (high vs. low BF, 257). These results show
that making fuller use of the depth of VGG to compute
the perceptual correspondence between a sketch and
object yields a stronger basis for explaining human visual
communication behavior. Unsurprisingly, this pragmatic
sketcher model employing high-level features did not fit
the data as well as the pragmatic sketcher model that could
directly access human recognition data (BF = 105.71).
However, a major advantage of incorporating a visual
encoder is the capacity to generalize to novel sketches
without requiring the collection of additional recognition
data for each new sketch.

To further probe the functional consequences of decreas-
ing the capacity for visual abstraction, we investigated each
model variant on sketch retrieval, context congruity, and
cost modulation. Critically, we found that high-level fea-
tures supported strong performance on sketch retrieval (95%
CI target rank, [3.03, 3.37], Fig. 5a), compared to mid-level
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features (target rank, [6.05, 6.56]) and low-level features
(target rank, [22.4, 24.1]). These results show that without
a high-performing visual encoder, the model is much less
likely to produce sketches of the correct object, a basic pre-
requisite for successful visual communication even in the
absence of contextual variability.

Moreover, the pragmatic sketcher model using high-
level features also displayed context congruity (95% CI,
[0.583, 0.632], Fig. 5b), comparable in degree to the
best-performing pragmatic model that operated directly
on empirical estimates of sketch-object correspondence,
showing that our full sketcher model displayed this
signature of contextual flexibility for novel communicative
contexts and sketches. The variant using mid-level features
also displayed context congruity to a weaker extent (95%
CI, [0.526, 0.576]), suggesting that an intermediate level of
visual abstraction is sufficient to achieve an intermediate
degree of context congruity. By contrast, the variant using
low-level features failed to prefer the context-congruent
sketch category (95% CI, [0.435, 0.475]), providing a
lower bound on the level of visual abstraction required
in the underlying encoder to support flexible visual
communication behavior.

Again, only the pragmatic sketcher model using high-
level features displayed the same qualitative pattern of cost
modulation as people did (95% CI: close = [0.199, 0.208],
far = [0.178, 0.181], Fig. 5c), while both of the other
variants using mid-level and low-level features failed to
do so (95% CI: mid-level: close = [0.186, 0.189], far
= [0.186, 0.188]; low-level: close = [0.188, 0.189], far
= [0.188, 0.189]).

These results so far show the best-performing visual
encoder to be the one making fuller use of the depth
of the base visual encoder to extract more abstract
perceptual properties, providing strong evidence for the
importance of a high degree of visual abstraction for
explaining our empirical findings. Next, we performed the
same context and cost sensitivity lesion experiments as
before in order to evaluate the contribution of pragmatic
inference in our full sketcher model. Again, we found that
the pragmatic sketcher provided a stronger overall fit to
human behavior than the context-insensitive variant (BF
= 28.1; see Table 1), and a modestly better fit than the
cost-insensitive variant (BF = 1.98). Critically, we found
that removing context and cost sensitivity diminished the
ability of this model to produce the context-congruent
sketch of the correct object (context-insensitive 95% CI,
[0.489, 0.539]; cost-insensitive 95% CI, [0.507, 0.554];
Fig. 5b), and appropriately modulate the cost of the
sketches it produced (context-insensitive 95% CI: close =
[0.185, 0.190], far = [0.185, 0.189]; cost-insensitive 95%
CI: close = [0.210, 0.219], far = [0.196, 0.200]; Fig. 5c).
By contrast, these lesions led to only modest decrements

in overall sketch retrieval performance (95% CI target
rank: context-insensitive = [3.65, 4.05], cost-insensitive =
[3.33, 3.67]; Fig. 5a), suggesting that the visual encoder
itself is a major determinant of the ability to produce
sketches of the correct object, even if not the context-
congruent version. These results converge with those of
the lesion experiments conducted on the pragmatic sketcher
model lacking a visual encoder, and together provide strong
evidence for the importance of both visual abstraction and
pragmatic inference for explaining contextual flexibility in
human visual communication.

Discussion

The present study examined how communicative context
influences visual communication behavior in a drawing-
based reference game. We explored the hypothesis that
people spontaneously account for information in common
ground with their communication partner to produce
drawings that are diagnostic of the target relative to the
alternatives, while not being too costly to produce. We
found that people spontaneously modulate how much time
they invest in their drawings according to how similar the
distractors are to the target, spending more time to produce
more informative sketches when the alternatives were
highly similar, but getting away with spending less time and
producing less informative drawings when the alternatives
were highly distinct. Observing such contextual flexibility
provides strong evidence that visual communication about
an object is not constrained exclusively by the visual
properties of that object alone. Rather, our findings
expose a critical role for pragmatic inference—the ability
to infer what information would not only be true, but
be relevant to communicate in context. To test this
hypothesis, we developed a computational model that
embodied both pragmatic inference and visual abstraction,
and found that it predicted human communication behavior
well, and outperformed variants of the model lacking
either component. Together, this paper presents a first
algorithmically explicit theory of how visual perception and
social cognition support contextual flexibility during visual
communication.

There are deep similarities between the computations
performed by the visual encoder in our model and those
posited by classic exemplar theories of categorization
(Shepard 1958; Medin and Schaffer 1978; Nosofsky 1988).
For instance, our model encodes all objects and sketches
as vectors embedded in a high-dimensional feature space,
and learns (via the adaptor network) a similarity function
that computes the correspondence between sketches and
objects. Unlike the settings in which classic categorization
models have typically been applied, our visual encoder
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operates directly on image inputs in order to compute
similarity relations between instances from distinct visual
modalities (i.e., sketch and 3D rendering). Although
DCNN representations have recently been applied to
explain human similarity judgments about images (Peterson
et al. 2018; Kubilius et al. 2016), ours is among the
first cognitive models to focus on learning instance-
level mappings between image modalities. In developing
the visual encoder, we discovered that simple distance
metrics (e.g., cosine or euclidean) applied to DCNN
feature vectors were insufficient to accurately capture the
human judgments of the correspondence between individual
sketches and objects. As a consequence, we developed
a custom nonlinear similarity function, parameterized by
a shallow “adaptor” neural network, in order to predict
these correspondence relationships. More broadly, training
adaptor neural networks to read out psychological quantities
of interest from generic DCNN feature representations
may be a promising approach to modeling how context
and learning adapts perceptual representations for various
downstream behaviors (Nosofsky 2011; Medin and Schaffer
1978).

This work generalizes the Rational Speech Act (RSA)
modeling framework, originally developed to explain
contextual effects in verbal communication (Frank and
Goodman 2012; Goodman and Stuhlmüller 2013; Franke
and Jäger 2016; Bergen et al. 2016), to the domain of visual
communication. RSA models take inspiration from the
insights of Paul Grice (Grice 1975), and incorporate ideas
from decision theory, probabilistic models of cognition,
bounded rationality, and linguistics, to understand how
substantial variance in natural language use can be
explained by general principles of social cognition. They
have been shown to capture key patterns of natural
language use (Goodman and Stuhlmüller 2013), achieve
good quantitative fits with experimental data (Kao et al.
2014), and enhance the ability of artificial agents to produce
informative language in reference game tasks (Monroe
et al. 2017; Cohn-Gordon et al. 2018). In extending this
modeling framework to the visual domain, our findings
provide novel evidence for the possibility that similar
cognitive mechanisms may underlie pragmatic behavior
across different communication modalities. This is a notion
implicitly endorsed by prior work that has used non-
linguistic communication modalities to investigate general
constraints on communication, although these prior studies
have not directly investigated contextual flexibility. (Goldin-
Meadow and Feldman 1977; Garrod et al. 2007; Fay et al.
2010; Theisen et al. 2010; Garrod et al. 2010; Galantucci
2005; Verhoef et al. 2014). Together, our findings suggest
how drawings spanning a wide range of appearances can
all nevertheless be effective carriers of meaning, depending
on how much and what kind of information is shared

between communicators. A fruitful avenue for future
research would be to augment the current model with the
capacity to learn from feedback and accumulate shared
information over time, endowing it with the capacity to
develop conventionalized ways of depicting objects that are
increasingly efficient, yet still meaningful within a context
(Garrod et al. 2007; Hawkins et al. 2019).

Formally accounting for how shared information con-
strains visual communication is an important step towards
a functional theory of pictorial meaning—how and why the
pictures we use, including sketches, diagrams, icons, maps,
and graphs look the way they do. One of the principal
insights resulting from our study is that substantial progress
towards this goal can be made by modeling the produc-
tion of pictorial representations as fundamentally solving
a social communication problem. While this general idea
has roots in the philosophical literature (Goodman 1976;
Abell 2009), our model is, to our knowledge, the first that
can be directly applied to images to generate quantitative
predictions. Although the trained model we present is opti-
mized for the particular set of objects we used in our human
behavioral experiment, our modeling approach is generic
and can be applied to any new dataset. This is important
because it suggests a general approach to modeling sketch
understanding, which could have applications ranging from
sketch-based retrieval (i.e., search engine using sketches as
input; Sangkloy et al. (2016)) to automatic sketch evaluation
(e.g., in educational settings, how well a sketch captures the
relevant properties of a target concept; Forbus et al. (2008)).

There are several limitations of our model that would
be valuable to address in future work. First, obtaining
a visual encoder that could produce accurate predictions
of perceptual correspondence between sketch-object pairs
required substantial supervision. While heavy supervision
is not uncommon when developing neural network models
of sketch representation (Sangkloy et al. 2016; Yu et al.
2017; Song et al. 2017), future work should investigate
architectures that require weaker supervision to estimate
image-level correspondences between sketches and natural
photographs. Moreover, future work should develop higher-
capacity models that can scale up to a wider range of
visual referents than the limited set of objects tested in our
study, while avoiding a corresponding increase in model
complexity and supervision. One promising approach may
be to exploit the hierarchical and compositional structure of
natural objects (i.e., parts, subparts, and their relations), as
they are expressed in both natural images and sketches of
objects (Mukherjee et al. 2019).

Second, our model produces a decision over which type
of sketch to produce in context, rather than producing
a particular sketch. This is of course different from the
action selection problem human participants face—they
must decide not only what stroke to make, but where to
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place them, how many, and in what order. While there have
been recent and promising advances in modeling sketch
production as a sequence of such actions (Lake et al. 2015;
Ha and Eck 2017; Ganin et al. 2018), these approaches
have not yet been shown to successfully emulate how
people sketch real objects, much less how this behavior is
modulated by communicative context. Future work should
develop sketch production models that both operate on
natural visual inputs and more closely approximate the
action space inherent to the task.

Meeting these challenges is not only important for
developing more human-like artificial intelligence, but
may also shed new light on the nature of human
visual abstraction, and how ongoing perception and long-
term conceptual knowledge guide action selection during
complex, natural behaviors. In the long term, investigating
the computational basis of visual communication may shed
light on the sources of cultural variation in pictorial style,
and lead to enhanced interactive visualization tools for
education and research.

Materials andMethods

Communication Experiment: Manipulation
of Context in Sketch-Based Reference Game

Participants

A total of 192 unique participants, who were recruited
via Amazon Mechanical Turk (AMT) and grouped into
pairs, completed the experiment. They were provided a
base compensation of $2.70 for participation and earned a
$0.03 bonus for each correct trial. In this and subsequent
behavioral experiments, participants provided informed
consent in accordance with the Stanford IRB.

Stimuli and Task

Because our goal was to understand how context influences
the level of detail people use to distinguish objects from
one another during visual communication, we populated our
reference game with contexts possessing two key properties:
(1) they contained familiar real-world objects, so that a
primary source of variation would be driven by context,
rather than difficulty recognizing or sketching the objects,
per se; and (2) they systematically varied in target-distractor
similarity within a session, lending greater statistical power
to comparisons between context conditions. To satisfy these
objectives, we obtained 32 3D mesh models of objects
belonging to 4 basic-level categories (i.e., birds, chairs,

cars, dogs), containing eight objects each. Each object was
rendered in color on a gray background at three-quarter
perspective, 10◦ viewing angle (i.e., slightly above), and
fixed distance. Independently in each experimental session,
objects were allocated to eight sets of four objects: Four
of these sets contained objects from the same category
(“close”); the other four of these sets contained objects from
different categories (“far” condition). The assignment of
objects to set and condition was randomized across pairs.
Each set of four objects was presented four times each, such
that each object in the quartet served as the target exactly
once.

Sketchers drew using black ink on digital canvas (pen
width = 5 pixels; 300 × 300 pixels) embedded in a
web browser window using Paper.js (http://paperjs.org/).
Participants drew using the mouse cursor, and were not
able to delete previous strokes. Each stroke was rendered
on the viewer’s screen as soon as it was produced. There
were no restrictions on how long participants could take
to make their drawings. After the sketcher completed their
drawing, the viewer guessed the identity of the drawn object
by clicking one of the four objects in the array. Otherwise,
the viewer had no other means of communicating with the
sketcher. Both participants received immediate task-related
feedback: the sketcher learned which object the viewer had
clicked, and the viewer learned the identity of the target.
Both participants earned bonus points for each correct
response.

Statistics

We primarily employed non-parametric analysis techniques
(i.e., bootstrap resampling) to estimate the effects of exper-
imental manipulations (Efron and Tibshirani 1994). We
favored this approach owing to its emphasis on estimation
of effect sizes, by contrast with the dichotomous infer-
ences yielded by traditional null-hypothesis significance
tests (Cumming 2014). Nevertheless, we found that tradi-
tional parametric statistical inference tests (i.e., t tests) gave
similar results, suggesting that our findings were robust to
the particular choice of statistical analysis technique.

Recognition Experiment: Measuring Perceptual
Similarity Between Sketches and Objects

Participants

A total of 112 participants were recruited via Amazon
Mechanical Turk (AMT). They were provided a base
compensation of $1.00 for their participation, and earned an
additional $0.01 bonus for each correct response.

http://paperjs.org/
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Task

On each trial, participants were presented with a randomly
selected sketch collected in the communication experiment,
surrounded by a grid containing the 32 objects from that
experiment. Their goal was to select the object in the grid
that best matched the sketch. Participants received task
feedback in the form of a bonus earned for each correct
trial. Participants were instructed to prioritize accuracy over
speed. We applied a conservative outlier removal procedure
based on response latency, whereby trials that were either
too fast to have supported careful consideration of the
sketch and menu of objects (RT < 1000ms), or too
slow and suggestive of an attentional lapse (RT > 30s),
were filtered from the dataset. The removal of these outlier
trials (8.01%) did not have a substantial impact on the
pattern of recognition behavior. In order to mitigate the
possibility that participants could adjust their matching
strategy according to any particular sketcher’s style, each
session was populated with 64 sketches sampled randomly
from different reference games. To obtain robust estimates
of sketch-object perceptual correspondences, each sketch
was presented approximately 10 times across different
sessions.

Computational Modeling

Sketch Data Preprocessing

To train and evaluate our sketcher model, we first filter the
sketch dataset to retain only sketches that were correctly
identified by the viewer during the communication task
(6.2% incorrect) and were compliant with task instructions
by not including “drawn” text annotations (4.4% non-
compliant). This filtered sketch dataset was then split into
training, validation, and test sets in a 80%, 10%, and 10%
ratio, and this split was performed in a 5-fold crossvalidated
manner. Splits were based on context, defined as the set
containing a specific target object and three distractor
objects, such that no context appeared both in the training
and test splits of any cross-validation fold. We ensured that:
(1) the number of sketches from each category (i.e., car) and
(2) the proportion of sketches from close and far trials were
equated across splits. This was done to control for biases in
model performance due to imbalances in the training or test
set.

Deriving Empirical Estimates of Perceptual Correspondence
Between Sketches and Objects

In the recognition experiment, most sketches were not
matched exclusively to a single object, but to several. We
treated these sketches as thus displaying some degree of

correspondence to the several objects it was matched to at
least once. For a single sketch, we estimate the perceptual
correspondence between that sketch and any object as
the proportion of recognition task trials on which it was
matched to that object. For sketches in each of 64 object-
context categories, we estimate the “aggregated” sketch-
object correspondence to be the proportion of recognition
task trials on which any sketch from this category was
matched to that object. Because our goal was to understand
how well each model could produce informative sketches
according to the context condition, and not necessarily to
reproduce exactly the same sketch as a particular participant
had on a specific trial, we use this aggregate correspondence
measure in all modeling experiments. As a result, sketch-
object correspondence scores lie in the range [0, 1], and
sum to 1 for sketches in the same object-context category.
Because all sketches from the same object-context category
share the same correspondence to each object, there are a
total of 32 sketch categories × 32 objects × 2 contexts =
2048 empirical perceptual correspondence scores.

Deriving Empirical Estimates of Sketch Costs

We reasoned that the amount of time taken producing each
sketch would be a natural proxy for the cost incurred by
workers on Amazon Mechanical Turk, who increase their
total compensation by completing tasks in a timely manner.
However, as there were no absolute constraints on the
amount of time that could be spent on each trial, there
was considerable variability across different participants
in terms of how much time they spent producing their
sketches. To control for this variability across participants
and to ensure robust estimates, we first removed outliers
(draw times exceeding 5 s.d. from the mean), then z-
score normalized drawing times across all remaining trials
within a participant, and finally averaged these normalized
draw times across sketches within the same object-context
category as above, yielding 32 objects × 2 contexts = 64
empirical cost estimates in total.

Visual Encoder Architecture

The visual encoder is a function that accepts a pair of images
as input (both 224 × 224 RGB; see Fig. 4a): a sketch, s, and
an object rendering, o, and returns a scalar value reflecting
the degree of perceptual correspondence between the sketch
and object, sim(s, o), which lies in the range [0, 1],
where sim(s, o) = 0 reflects minimal correspondence and
sim(s, o) = 1 reflects maximal correspondence.

The encoder consists of two components: a base visual
encoder and an adaptor network. We employed VGG-19
(Simonyan and Zisserman 2014) as our base visual encoder
architecture. We augmented VGG-19 with a shallow fully
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connected adaptor network that is trained to predict
the perceptual correspondence between individual sketch-
object pairs. Only the parameters of this adaptor network are
trained; the parameters of the base visual encoder remain
frozen. We compared three adaptor networks that intercept
VGG-19 image representations at different layers: the first
max pooling layer (early), the tenth convolutional layer
(mid), and the first fully connected layer (high). To facilitate
comparison between adaptor networks, we ensured that
each of the three adaptors contain a comparable number of
trainable parameters (number of learnable parameters for
high: 1048839; mid: 1049115; low: 1048833) with identical
training hyperparameters (i.e., learning rate, batch size,
etc.). To discriminate which layer provides the best starting
feature basis for predicting sketch-object correspondence,
these adaptor networks were also deliberately constrained to
be shallow, i.e., consisting only of two linear layers with an
intervening point-wise nonlinearity.

High. When applying the high-level visual encoder, a
sketch and object were first passed through VGG and
a feature vector in R

4096 for each image is extracted
from the one of the highest layers (i.e., the first fully
connected layer, also known as fc6). These two vectors
were then concatenated to form a single vector in R

8192,
to be passed into the high adaptor network. The high
adaptor is composed of one linear layer that maps from
R

8192 → R
128, followed by a “Swish” nonlinearity

(Ramachandran et al. 2018) and dropout, then a second
linear layer mapping from R

128 → R
1. Swish is a

recently discovered nonlinearity that outperforms the
common rectified linear nonlinearity (ReLU) in deep
models on several benchmarks (Ramachandran et al.
2018). Dropout was applied to mitigate overfitting and
improve generalization (Hinton et al. 2012; Gal and
Ghahramani 2015).

Mid. When applying the mid-level visual encoder, sketch
and object representations are intercepted from an
intermediate layer (i.e., the 10th convolutional layer,
conv 4 2). Features in this layer are of dimensionality
512 × 28 × 28. Each of the sketch and object feature
tensors were then “flattened” to a one dimensional
vector in R

512 using a weighted linear combination over
the spatial dimensions

∑28
i=1

∑28
j=1 wij ∗ xij , where xij

indexes a spatial location in the image representation at
this layer (i.e., “soft attention” over the spatial dimension,
Xu et al. (2015)). These weights {wij |1 ≤ i, j ≤ 28} are
learned jointly with the parameters of the rest of the mid
adaptor, but learned independently between sketch and
object image modalities (Xu et al. 2015).

The two feature vectors in R
512 are then concatenated

to form a single vector in R
1024. Following the

architecture of the high adaptor, the mid adaptor consists

of a linear layer that maps from R
1024 → R

1021, followed
by a Swish nonlinearity, dropout, then a linear layer from
R

1021 → R
1.

Low. When applying the low-level visual encoder, sketch
and object representations are intercepted from the first
max pooling layer (i.e., pool1). Features in this layer
are of dimensionality 64 by 112 by 112. As above,
a weighted sum of model activations over the spatial
dimension was applied first (112 × 112), yielding a
sketch and object vector, both in R

64, which were then
concatenated to form a single vector in R

128. This was
followed by a linear layer that maps from R

128 → R
7875,

then a Swish nonlinearity, dropout, and a final linear layer
that maps from R

7875 → R
1.

The penultimate hidden layer sizes in the mid (i.e.,
1021 units) and low adaptors (i.e., 7875 units) were chosen
to ensure that the total number of learnable parameters
matched the high adaptor as closely as possible.

Visual Encoder Training

We trained each adaptor (i.e., high, mid, low) to predict,
for each sketch, a 32-dimensional vector that captures the
pattern of perceptual correspondences between that sketch
and all 32 objects. The rationale for having the adaptor
generate a 32-dimensional vector, rather than only the
correspondence to the target, is to explicitly encourage it to
match the pattern of correct responses and errors in human
sketch recognition behavior, rather than to achieve maximal
accuracy on the task.

Each encoder accepts a sketch-object pair as input and
returns a real number as output, reflecting their perceptual
correspondence. We iterate over all objects in the stimulus
set I to generate the predicted 32-vector for each sketch,
and then apply softmax normalization, yielding a vector that
sums to 1. We define the loss function, L, to be the cross
entropy loss between the predicted distribution, q and the
empirically estimated perceptual correspondence vector, p

(which also sums to 1):

L =
∑

x∈I
p(x) log q(x) (5)

We use the Adam optimization algorithm (Kingma and
Ba 2014) (learning rate = 1e-4) over minibatches of size
10 for 100 epochs, where an epoch is a full pass through
the training set.1 After training each adaptor for 100 epochs,

1As a property of the input domain, the gradients with respect to
adaptor parameters are very small (1.51e-4 ± 2.61e-4), inevitably
resulting in poor learning (we can reproduce this effect from several
initializations). We find that naively increasing the learning rate led
to unstable optimization, but that multiplying the loss by a large
constant C leads to a much smoother learning trajectories and good test
generalization. Critically, increasing the learning rate and multiplying
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we select the model found during training with the best
performance on the validation set.

Generating Encoder-Based Estimates of Perceptual
Correspondence Between Sketches and Objects

To generate sketch-object correspondence scores for
sketches in each test split, we first pass each sketch-
object pair into a visual encoder, yielding a single image-
level correspondence score lying in the range (−∞, +∞).
To map these raw image-level scores to the appropriate
range for a correspondence score ([0, 1]), we first z-score
them (f (x) = x−x̄

s ), then apply the logistic function
(f (x) = 1

1+e−x ). These normalized image-level correspon-
dence scores are then averaged across all sketches belonging
to the same object-context category, yielding 32 objects ×
32 sketches × 2 contexts = 2048 model-based perceptual
correspondence scores for each visual encoder variant (i.e.,
high, mid, low).

Model Comparison

In order to test the contribution of each component of our
sketcher model, we conducted a series of lesion experiments
and formal model comparisons. To quantify the evidence
for one model over another, we computed Bayes factors: the
ratio of likelihoods for each model, integrating over all their
respective parameters under the prior:

BF =
∫

P(D|M1, θ1)P (θ1)∫
P(D|M2, θ2)P (θ2)

Unlike classical likelihood ratio tests, which use the
maximum likelihood, the Bayes factor naturally penalizes
models for their complexity (Wagenmakers et al. 2018;
Jefferys and Berger 1992). We placed uninformative
uniform priors over all five parameters required to specify
our models: a discrete choice over alternative approaches to
computing perceptual correspondence:

m ∼ Unif{“human recog”, “high”, “mid”, “low”}
and over the continuous latent parameters,

wi, wc, α ∼ Unif(0, 500),

wd ∼ Unif(0, 1).

Note that wi, wc, and α were allowed to take any
nonnegative real value (i.e., were not restricted to fall
between 0 and 1). In practice, an upper bound of 500 for
the uniform prior was found to be sufficiently large to
support robust inference. By contrast, wd , which balances
the contributions of absolute perceptual correspondence

the loss by a constant are not equivalent for second moment gradient
methods. In practice, C = 1e4.

and relative diagnosticity in context, was constrained to
fall between 0 and 1. To compute the likelihood function
P(D|M, θ) for a speaker model M under parameters θ ,
we perform exact inference for our sketcher model using
(nested) enumeration and sum over all test set datapoints
within a cross-validation fold.

Specifically, we compute the exact likelihood at every
point on a discrete grid of parameters. This is of particular
interest for nested model comparisons, e.g., comparing our
full model to a context-insensitive variant. Rather than
computing the full marginalized likelihood for both models,
we can use the Savage-Dickey method (Wagenmakers et al.
2010) to simply compare the posterior probability against
the prior at the nested point of interest (e.g., wc = 0) for the
full model.

To evaluate the contribution of pragmatic inference, we
begin by comparing the pragmatic sketcher model using
empirically estimated perceptual correspondences to nested
“cost-insensitive” (wc = 0) and “context-insensitive”
(wd = 0) variants. To evaluate the contribution of visual
abstraction, we then proceed to compare the three visual
encoder variants that adapt features from different layers of
VGG-19, marginalizing over all other parameters. Finally,
we perform the same context and cost lesion experiments
on the full model that employed the best-performing visual
encoder (i.e., “high”).

Evaluating Model Predictions

We implemented our models and conducted inference in the
probabilistic programming language WebPPL (Goodman
and Stuhlmüller 2014). We use MCMC to draw 1000
samples from the joint posterior with a lag of 0, discarding
3000 burn-in samples. We constructed posterior predictive
distributions by computing each measure of interest (i.e.,
target rank, context congruity, sketch cost) over the test
data set, for every MCMC sample. To estimate standard
errors on predictions across models, we employed the
following procedure to account for three nested sources
of variation: variation across trials within a test split,
variation across the parameter posterior within a test split,
and variation across test splits. Specifically, for each model
variant and for each test split we bootstrap resampled
trials with replacement from the test dataset 1000 times
to estimate the mean and standard error on each measure
of interest, marginalizing over MCMC samples from the
parameter posterior. We applied inverse-variance weighting
to aggregate these estimates of the mean and standard error
across test splits, such that test splits with lower variance
contribute more than do splits with higher variance, yielding
an overall estimate of the mean and standard error for each
measure of interest, for each model variant. We estimated
the half-widths of the 95% confidence interval for each
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measure of interest under the assumption of normality for
the sampling distribution of the mean.

Statistics

In our behavioral experiments, we employ nonparametric
analysis techniques (i.e., bootstrap resampling) to construct
95% confidence intervals and compute p values for key
parameters and comparisons of interest. All p values
reported for comparisons between conditions are two-
sided, found by determining the proportion of 10,000
bootstrap iterations that fell below zero, multiplied by two.
In our computational modeling experiments, we employ
Bayesian data analysis to infer full posterior distributions
over latent parameters from data, and perform formal
model comparison by computing Bayes factors using
marginal likelihoods. We additionally ensure robustness of
all modeling results using five-fold cross-validation.
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