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Abstract

What is the relationship between recognizing objects and
drawing objects? We examine the possibility that both func-
tions are supported by a common internal representation.
First, we show that a model of ventral visual cortex only
optimized to recognize objects in photographs generalizes to
drawings of objects, suggesting that the capacity for visual
abstraction is rooted in the functional architecture of the visual
system. Next, we tested whether practice drawing objects
might alter how those and other objects are represented. On
each trial, participants sketched an object. The model then
guessed the identity of the sketched object, providing real-
time feedback. We found that repeatedly sketched objects were
better recognized after training, while sketches of unpracticed
but similar objects worsened. These results show that visual
production can reshape the representational space for objects:
by differentiating trained objects and merging other nearby
objects in the space.

Keywords: communication; drawing; learning; perception
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Introduction
Although the retinal images cast by physical objects and line
drawings differ dramatically, humans effortlessly recognize
objects in either format. How does the brain accomplish
this feat of visual abstraction? Moreover, with just a few
well-placed strokes, humans are able to communicate abstract
ideas (e.g., object identity) by drawing. What are the mecha-
nisms that underlie the ability to produce a sketch that repre-
sents an object?
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Figure 1: Visual recogni-
tion entails mapping an
image onto a specific idea
(e.g., object identity based
on a photograph). Vi-
sual production entails ex-
pressing a specific idea in
an image (e.g., identifiable
sketch based on an object
concept). (Art credit: Jef-
fery Thompson)

Here we examine the possibility that the ability to recog-
nize objects and produce drawings of objects are linked by a
common internal substrate — a generalized object represen-
tation. This premise is plausible, given the reciprocal func-
tions of recognition and production (Fig. 1). Specifically, vi-
sual recognition entails mapping an image from the external
world onto a specific idea in mind; visual production entails
expressing a specific idea in mind as an image residing in

the external world. We test this hypothesis by evaluating two
predictions it makes: (1) that recognition of both objects and
human drawings can be achieved by a common visual fea-
ture representation; and (2) that training on a novel drawing
task can alter this representation, just as training on visual
recognition tasks can alter object representations (Goldstone,
1998).

Part One: Recognizing Pictures of Objects
People can recognize objects in the face of enormous vari-
ation in pose, size, position, lighting, and other sources of
noise, a fact which belies the computational difficulty of this
feat (Pinto, Cox, & DiCarlo, 2008). This ability is supported
by a set of hierarchically organized brain regions known as
the ventral visual stream (Malach, Levy, & Hasson, 2002),
by which simple visual features (e.g., orientation, spatial fre-
quency) encoded in the lowest area, V1, are successively
combined and transformed in such a way as to support read
out of abstract object properties (e.g., category, identity) at
the top level in the hierarchy, inferior temporal (IT) cortex
(Hung, Kreiman, Poggio, & DiCarlo, 2005).
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Figure 2: Multi-domain imageset containing sketches, photographs,
and 3D-rendered images of 147 real-world objects.

Supplementing natural visual inputs from objects in the
environment, humans have also devised a wide range of
technologies for producing pictures that represent objects.
The most ancient among these is drawing, whereby lines
and marks are made on a surface by manipulating a stylus
(Clottes, 2008). Despite large differences between drawings
of objects and visual inputs from physical objects (or photore-
alistic images of objects), they are just as effective at evoking
the real-world object (Biederman & Ju, 1988).

What commonalities across line drawings and photoreal-
istic images (e.g., photographs, 3D-renderings) allow people
to recognize the same object depicted in such different ways?



Discovering the computational principles that underlie such
robust recognition is a challenge that lies at the heart of hu-
man visual abstraction. Here we present a computational ap-
proach to quantifying such commonalities (Fan, Yamins, Di-
Carlo, & Turk-Browne, 2014; Yamins et al., 2014).

Methods
Imageset We first assembled a multi-domain imageset
containing sketches, photographs, and 3D-rendered images
(Fig. 2). From an existing sketch corpus (Eitz, Hays, & Alexa,
2012), we obtained ∼12,000 sketches of 147 common, real-
world objects. These sketches were produced by human par-
ticipants on Amazon Mechanical Turk, who were prompted
on each trial with a randomly chosen entry from a list of 250
basic-level object categories to sketch on a digital drawing
canvas. From the annotated Imagenet database (Deng et al.,
2009), we acquired ∼200K photographs of the same 147 ob-
jects, depicting diverse exemplars from each object class em-
bedded in their natural backgrounds. Finally, using 3D mesh
models, we rendered ∼200K synthetic images of these same
objects in highly variable positions, sizes, and poses against
randomly selected real-world backgrounds.

Neurally Predictive Model of Object Recognition We
then applied a recently developed deep convolutional neural
network model that was inspired by the functional architec-
ture of the ventral visual stream in order to extract features
from these images (Yamins et al., 2014; Fig. 3a). This model
had been identified using hierarchical modular optimization
(HMO), a procedure for efficiently searching among mixtures
of convolutional neural networks for candidate hierarchical
model architectures that achieve high performance on basic-
level object recognition tasks. The HMO procedure was per-
formed on an independent imageset containing photographs
only, with no objects in common with the multi-domain im-
ageset described above. In addition to achieving human-level
performance on these tasks, the higher layers of the resulting
model are also quantitatively predictive of neural population
responses in high-level visual cortex (e.g., V4 and IT). As
such, it was an attractive candidate for investigating the visual
invariants that support recognition across image domains.

Results
The model uses a fixed, but large number of feature dimen-
sions to represent all images. Each image elicits a pattern
of feature values at every layer in the model, which may be
expressed as a vector in this high-dimensional feature space.
For a given image domain, we computed average feature vec-
tors within an object class, then derived correlation matri-
ces based on these feature vectors. This procedure was per-
formed at each of the five layers of the model. Each matrix
entry represents the proximity between the average feature
vectors from the model for a pair of objects (Kriegeskorte
et al., 2008). Higher values (cooler colors) reflect relatively
proximal pairs of objects, whereas smaller values reflect more
distant object pairs. Each 147x147 matrix provides a compact
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Figure 3: (a) Feature extraction using a neurally predictive, deep
convolutional neural network model optimized for performance on
challenging object recognition tasks. (b) Correlation matrices for
each image domain, displaying the overall layout of objects in high-
dimensional feature space. Each entry shows correlation distance
(1-ρ) between feature vectors for a pair of objects.
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Figure 4: Cross-domain similarity (Spearman’s ρ) between image
domains increases as a function of model layer.



visualization of the layout of objects in the high-dimensional
feature space inherent to each layer of the model, for each
image domain (see Fig. 3b for first and top-layer matrices).

All matrices individually show clear block-diagonality, in-
dicating the presence of higher-order structure due to cluster-
ing of objects with similar features.

The matrices computed based on top-layer output also
show striking cross-domain similarities, both visually and as
quantified by Spearman rank correlation comparisons (Fig.
3b). This indicates an underlying commonality in the fea-
ture representations for the three image modalities at the top
layer in the model, the layer whose output has been previ-
ously shown to be highly predictive of neural population re-
sponses in IT cortex.

By contrast, cross-domain similarities are negligible at the
lowest layer in the model, the layer approximating the lo-
cal/simple features encoded in V1. This shows that low-level
image statistics (e.g., edge fragments) are insufficient to ex-
plain robust recognition across image modalities, especially
under conditions of high image variation.

We found that the strength of cross-domain similarities in-
creased over successive layers in the model (Fig. 4), con-
sistent with the understanding that the ventral visual stream
computes progressively more abstract properties of objects
over successive processing stages.

In sum, our results show that a hierarchical neural net-
work model only optimized to recognize photorealistic im-
ages of objects generalized to abstract drawings of objects,
having produced congruent object-similarity ‘maps’ across
image domains based on the same visual feature represen-
tation. These results suggest that the capacity for visual ab-
straction may be rooted in the functional architecture of the
visual system.

Part Two: Producing Drawings of Objects
How does learning refine object representations? For exam-
ple, although people tend to label an object at the basic level
(Mervis & Rosch, 1981), domain-specific expertise (e.g.,
knowledge of dogs) makes subordinate-level names (e.g.,
‘schnauzer’) as accessible (if not more accessible) than basic-
level names for objects in the domain of expertise (Tanaka &
Taylor, 1991). This suggests that initially similar stimuli can
become more differentiated with practice. Expertise can also
lead to unitization of features that were initially processed
separately. For instance, dog experts are worse at recognizing
inverted images of dogs than non-experts (Diamond & Carey,
1986), suggesting that extensive experience with an object
can lead to automatic binding of features into a viewpoint-
specific functional unit.

Such findings suggest that training on recognition tasks can
alter object representations. Here we ask whether training on
visual production tasks can also alter representations of ob-
jects. In the previous section, we found that computations
approximating those performed by the ventral visual stream
produced congruent object similarity ‘maps’ for both photo-

realistic images and hand-drawn sketches of objects. Insofar
as both the ability to recognize sketches and to produce recog-
nizable sketches recruit a common internal representation, we
hypothesized that practice drawing some objects (e.g., horse,
cow) might affect the way that those and other, related objects
(e.g., sheep) are subsequently represented.

Since recognizability is a key attribute of successful draw-
ings, a natural starting point for examining learning is to iden-
tify objects for which untrained participants have trouble pro-
ducing clearly recognizable drawings — that is, that are fre-
quently confused with drawings of other objects. The most
confusable objects are likely to be objects whose drawings
share many visual features, even if the objects themselves are
not semantically related, per se (e.g., bell and pear). To de-
fine groups of related objects (i.e., ‘visual categories’), we
exploit pre-existing object clusters revealed by the model in
the original sketch corpus collected by Eitz et al. (2012).

categories
airplane bed bell cat banana floor lamp cactus SUV

blimp bench frying-pan cow dolphin fork crab bicycle
crocodile chair hat elephant duck guitar giraffe bus

fish couch pear horse mosquito hammer lobster motorbike
helicopter harp shoe kangaroo mouse microphone palm tree race car
ship ladder socks pig seagull shovel pineapple train

trumpet laptop tablelamp rabbit shark snake tiger truck
violin table teapot sheep swan spoon zebra van

ob
je

ct
s

trained
near
far

pre

x5
{ }
training post

a

b

Figure 5: (a) Stimuli: Objects belonged to eight visual categories,
each containing eight items. (b) Design: Each participant was ran-
domly assigned two of these categories. During training, partici-
pants drew four randomly selected objects in one category (Trained)
multiple times. Before and after training, participants drew the other
four objects in that category (Near), as well as the objects in the
second category (Far), once each.

Methods
Participants Six hundred and fifty-one participants were
recruited via Amazon Mechanical Turk (AMT) for the draw-
ing experiment, with sixty excluded for failing to complete
the session. Participants were paid a base amount of $1.50
and up to $3.00 bonus for high task performance. Three hun-
dred and twenty-seven additional participants were recruited
(via AMT) to provide labels for the sketches from the drawing
experiment, and were paid $0.85 for their participation. All
provided informed consent in accordance with the Princeton
IRB.

Stimuli and Design In order to identify groups of objects
that are drawn similarly prior to training, we applied a cluster-
ing algorithm (affinity propagation with damping=0.9; Frey
& Dueck, 2007) to the features extracted from the 147-
object sketch corpus described above (Eitz et al., 2012). This
yielded 16 clusters containing between 3 and 20 objects each.
Among clusters containing at least 8 objects, we defined 8
visual categories containing 8 objects each (Fig. 5a). Each
participant was randomly assigned two of these categories.
During training, participants sketched 4 randomly selected



objects in one category (Trained) multiple times. Before and
after training, participants sketched the other 4 objects in that
category (Near), as well as the objects in the second category
(Far), once each (Fig. 5b).

Task The sketching task was performed in the context of a
game (‘Guess My Sketch’) in which participants teamed up
with two avatars (red, blue) in order to earn points. At the
start of each trial, only the red avatar was onscreen. This
avatar cued participants with either an image (N=324) or
word (N=267) that referred to a target object for them to
sketch (Fig. 6). After cue offset, the blue avatar appeared,
prompting the participant to begin sketching. Upon sketch
submission, the blue avatar listed its top three guesses as to
the identity of the drawn object, thus providing participants
with immediate feedback about the quality of their sketch.
These guesses were listed in order of confidence. Participants
earned points if any of these guesses were correct, and more
points the earlier the correct guess was in the list.

image cue verbal cue

sketching
task

start of
trial

(3s)

(until submission)

classifier
feedback
(3 guesses
displayed)

1 horse

2 cow

3 sheep

4 elephant

5 pig

6 helicopter

7 truck

8 bench

9 shoe

10 dolphin

…

55 zebra

56 trumpet

57 bell

58 teapot

59 couch

60 shovel

61 motorcycle

62 frying-pan

63 mouse

64 cactus

target
rank

submit

Figure 6: Task: On each trial, participants were prompted with an
image (N=324) or word (N=267) that referred to a target object for
them to sketch. The computer guessed the identity of the drawn
object in real time, providing participants immediate feedback about
the quality of their sketch. The rank of the target in the list of all 64
guesses (ordered by confidence) returned by the computer was used
to track changes in performance across trials.

In the image-cue version of the task, unique photographs
were used as cues on every trial in order to discourage overly
stereotyped sketches. Participants were instructed to “make a
sketch in which someone else is likely to recognize the object
depicted,” but were informed that the sketch did not have to
exactly depict what was in the photo. Other than the lack of an
image cue, the verbal-cue version of the task was identically
structured.

Feedback We trained a 64-way support vector machine
(SVM) linear classifier on model responses to photographs
of the objects used in this study, but no sketches. (Thus,
sketch-classification during the experiment reflects pure gen-
eralization across image domains.) On each trial, top-layer
model features were extracted from the submitted sketch in
real time, which were passed to the 64-way classifier to de-
termine feedback. The classifier returned a list of 64 margin
values, corresponding to the level of confidence that the test
image belonged to each object class. The three objects with
the most positive margin values (highest confidence) were re-
turned to the participant as guesses. In the verbal-cue version
of the task, when none of the three top guesses were correct,
the rank of the target in this ordered object list was also re-
turned to the participant (e.g.,“Too bad...‘giraffe’ would have
been my 9th guess.”). Because this target rank value provides
a consistent measure of the ‘goodness-of-fit’ of the submit-
ted sketch to the target object representation in the model,
this value served as our primary measure of task performance.
Since the criteria for recognition by the model were fixed, we
interpret changes in task performance as reflecting changes to
the participants’ internal object representations.

Validating Model Representation Because the conditions
used by Eitz et al. (2012) to collect sketches differ somewhat
from our own (e.g., only verbal cues were used, each partic-
ipant sketched an object only once, and could apply ‘undo’,
‘redo’, ‘clear’ on their sketches), we first sought to assess the
similarity between their sketch corpus and the sketches col-
lected for this experiment. To accomplish this, we extracted
features of sketches from the verbal-cue and image-cue ver-
sions of the task using top-layer output from the model.
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Figure 8: An independent cohort of human participants guessed
the identity of objects depicted in drawings from the image-cue ex-
periment. Human and computer recognition performance (d’) was
highly consistent across objects (r=0.649).

For each version of the task, we computed the average fea-
ture vectors for all sketches within an object class, then de-
rived correlation matrices on these feature vectors. In both
the image-cue and verbal-cue datasets, we found that sketches
of objects within a category were highly similar, validating
category assignments. The two matrices were also highly
similar to each other (Spearman’s ρ=0.890), suggesting that
this feature representation successfully captured object iden-
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Figure 7: Sample sketches from the experiment, with target label and model’s top guess.

tity despite low-level task differences. Moreover, both matri-
ces were highly similar to the original sketch corpus (image-
original: ρ=0.715; verbal-original: ρ=0.708). An indepen-
dent cohort of human participants (N=327) provided three la-
bels to each sketch from the image-cue experiment, in order
of confidence, from the set of 64 object labels. We found that
human and model recognition performance (d′) was highly
consistent across objects (Spearman’s ρ=0.649, Fig. 8).

Consequences of Drawing Practice Since the assignment
of objects to condition was randomized across participants,
no differences in performance (target rank) on Trained, Near,
and Far objects were predicted during the pre-test. To test
this, we computed the mean target rank in each condition for
each participant (Trained=9.92, Near=9.24, Far=9.57), which
we then analyzed using a 3-condition (Trained, Near, Far)
x 2 cue-type (image, verbal) repeated-measures ANOVA.
There was no main effect of condition on pre-test perfor-
mance (F2,1178=1.70, p=0.184). Cue type did have an effect
(F1,589=19.7, p<0.001), but did not interact with condition
(F2,1178=0.258, p=0.773).

Our main hypotheses concerned changes in performance
due to focused drawing practice on the Trained objects.
Specifically, we predicted that repeatedly sketching a subset
of the objects in one category would affect how other similar
objects belonging to the same category were drawn, but that
such practice would not affect how unrelated objects were
drawn.
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Figure 9: Changes in performance between post-test and pre-test for
each condition: (left) when computing target rank among all 63 dis-
tractors and (right) when computing target rank relative to remain-
ing 7 objects within the target category only. Error bars represent 1
s.e.m. *p<0.05, **p<0.01,***p<0.001

To evaluate this prediction, we calculated the change in tar-
get rank for each item (∆rank = rankpost− rankpre), then aver-
aged these ∆rank values for each condition within-participant.

We then performed the same type of ANOVA as was used
for the pre-test analysis, which revealed a highly significant
difference among conditions (F2,1178=12.7, p<0.001). There
was no main effect of cue-type (F1,589=0.213, p=0.644), and
no interaction with condition (F2,1178=0.365, p=0.695), so
in subsequent analyses we collapsed across cue-type. A
follow-up t-test revealed that sketches of Trained objects were
better recognized by the model following training (∆rank <
0:t590=3.89, p=0.0001), and this improvement was also sta-
tistically reliable when compared with performance on Far
objects (∆rank,trained <∆rank, f ar: t590=3.05, p=0.002). By con-
trast, model performance for sketches of Near objects wors-
ened after training relative to baseline (∆rank < 0: t590=2.03,
p=0.04) and relative to control Far objects (∆rank,near <
∆rank, f ar: t590=2.15, p=0.03). Recognition of Far objects
did not change significantly relative to baseline (∆rank < 0:
t590=0.751, p=0.453). This was true when computing the tar-
get rank among all distractors (Fig. 9a), as well as when clas-
sification was restricted to objects within the target category
(Fig. 9b).

These results show that visual production reshaped par-
ticipants’ representational space for objects: by differentiat-
ing trained objects and merging other objects nearby in the
space (Fig. 10). More broadly, these findings suggest that the
outward expression of visual concepts can itself bring about
changes to their internal representation.
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Figure 10: (a) Representational similarity between conditions across
phases (averaged over object identity): low values in the large off-
diagonal blocks correspond to larger average correlation distances
between objects in different categories. More subtle changes un-
derlying the effects shown in Fig. 9 are reflected in the smaller di-
agonal and off-diagonal blocks. (b) Visualization of changes to the
representation using multidimensional scaling on the correlation dis-
tances between objects in each condition.



Discussion
Humans draw for many reasons: to depict, to record, to plan,
to explain, to create (Tversky, 2011). Drawn images predate
the historical record (Clottes, 2008), are pervasive in human
culture (Gombrich, 1989), and are often produced prolifically
in childhood (Kellogg, 1969). Moreover, drawing is a pow-
erful tool for communication — with just a few strokes it is
possible to convey the identity of a face (Bergmann, Dale,
& Lupyan, 2013) or express an intention (Galantucci, 2005).
Just as investigations of both verbal comprehension and pro-
duction are indispensable to theories about linguistic com-
munication, a more complete understanding of visual com-
munication will entail examining how visual recognition and
production interact to achieve our goals.

Although we interpret our results as supporting the idea
that training had reshaped participants’ internal represen-
tation of objects, another possibility is that they had only
adapted their responses based on classifier feedback. Exam-
ining the generality of these effects across different tasks in
subsequent studies will be helpful for teasing apart these two
accounts. Specifically, future experiments will examine how
learning to draw objects affects how these objects are later
perceived, to further evaluate the idea that visual production
alters a generalized object representation that supports both
recognition and production. In addition, we plan to investi-
gate how visual learning achieved via active production dif-
fers from that achieved through passive observation (Gureckis
& Markant, 2012), involving close examination of how sen-
sory feedback (e.g., visual, tactile) and social interaction (Fay,
Garrod, Roberts, & Swoboda, 2010) influence learning. Ul-
timately, inquiries into the psychological basis of visual pro-
duction may shed new light upon the origins of symbolic writ-
ing systems for communication, and the very nature of our
ability to apprehend abstract meanings from visual artifacts.
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