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Abstract

Production and comprehension have long been viewed as inseparable components of language.

The study of vision, by contrast, has centered almost exclusively on comprehension. Here we

investigate drawing—the most basic form of visual production. How do we convey concepts in

visual form, and how does refining this skill, in turn, affect recognition? We developed an online

platform for collecting large amounts of drawing and recognition data, and applied a deep convo-

lutional neural network model of visual cortex trained only on natural images to explore the

hypothesis that drawing recruits the same abstract feature representations that support natural

visual object recognition. Consistent with this hypothesis, higher layers of this model captured the

abstract features of both drawings and natural images most important for recognition, and people

learning to produce more recognizable drawings of objects exhibited enhanced recognition of

those objects. These findings could explain why drawing is so effective for communicating visual

concepts, they suggest novel approaches for evaluating and refining conceptual knowledge, and

they highlight the potential of deep networks for understanding human learning.
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1. Introduction

Since the earliest known etchings onto cave walls were made 40,000–60,000 years ago

in modern-day Spain (Hoffmann et al., 2018; Pike et al., 2012) and Indonesia (Aubert

et al., 2014), people have devised many ways to render their thoughts in visual form,

employing media ranging from stone and clay to paper and digital displays. The most
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basic and direct among these visualization techniques is drawing, in which a person pro-

duces marks that form an image. Drawing constitutes just one of several methods for

externalizing mental representations in graphical form, an ability we term visual produc-
tion. Drawn images predate symbolic writing systems (Clottes, 2008), are pervasive in

many cultures (Gombrich, 1989), and are produced prolifically by children from an early

age (Kellogg, 1969). Moreover, drawing is a versatile medium supporting diverse repre-

sentational goals, including photorealistic rendering from observation (Cohen & Bennett,

1997; Tchalenko, 2009), informal sketching from semantic knowledge (Bozeat et al.,

2003; Karmiloff-Smith, 1990), and the production of schematic diagrams to support

abstract reasoning (Bauer & Johnson-Laird, 1993; Novak & Bulko, 1992).

Here, we ask how sketches communicate abstract information about object identity.

Remarkably, we perceive simplified sketches of objects as resembling physical objects

(Biederman & Ju, 1988; Eitz, Hays, & Alexa, 2012; Gibson, 1971) in spite of the fact

that sketches and objects are profoundly different in composition. What operations per-

formed by the brain allow us to see this correspondence in a single glance? Because

drawings are composed of contours, it is intuitively appealing to think of a sketch as

approximating the edge contours in an image of an object. And because edges can be

extracted by applying relatively shallow computations on images, one might expect

this resemblance relation to be captured early in visual processing (Hubel & Wiesel,

1968; Kay, Naselaris, Prenger, & Gallant, 2008; Marr & Hildreth, 1980). However,

while this might explain why a tracing of an object in a photo might resemble that

object (Biederman & Ju, 1988; Ishai, Ungerleider, Martin, & Haxby, 2000), it does

not explain humans’ robust ability to recognize the referent of most sketches produced

by non-experts, which omit many details, distort the size and proportions of con-

stituent parts, and are highly schematized (Eitz et al., 2012; Sangkloy, Burnell, Ham,

& Hays, 2016).

On the other hand, several influential theorists have argued that socially mediated

experience with pictorial representations is necessary to be able to understand them. On

this view, generic visual computations are insufficient to account for the perceptual corre-

spondence between drawings and objects—rather, drawings come to denote objects

through culturally specific conventions much the same way that verbal labels denote

objects (Gombrich, 1969; Goodman, 1976). While a strong version of this view is contro-

versial (Abell, 2009; Gibson, 1971; Kennedy, 1975), the interpretation of drawings can
crucially depend on social and cultural factors. Indeed, many drawings that people use to

communicate are quite sparse, emphasizing information that is currently relevant, and

omitting other details. In the appropriate context, even a few strokes can express the iden-

tity of a face (Bergmann, Dale, & Lupyan, 2013), a suggested route (Agrawala & Stolte,

2001), or or an intention to act (Galantucci, 2005). Over time, repeated communication

between members of the same community can lead to novel graphical conventions (Fay,

Garrod, Roberts, & Swoboda, 2010; Garrod, Fay, Lee, Oberlander, & MacLeod, 2007).

However, in the absence of contextual cues or prior interaction history, such sparse repre-

sentations may be insufficient to communicate specific meanings (Healey, Swoboda,

Umata, & King, 2007).
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How can these different accounts for the basis for fluency with drawn images be rec-

onciled? Here we propose a computational framework for systematically investigating

how drawings convey visual concepts. The current investigation is guided by the central

hypothesis that the act of producing recognizable drawings of visual objects recruits the

same perceptual representation used for recognizing that object in natural scenes. This

lays the foundation for future work to understand how drawings that crucially depend on

social and cultural context to be recognizable arise from the integration of this common

perceptual representation and social learning mechanisms.

A first prediction of our current hypothesis is that drawings of objects—although

impoverished in many ways—retain precisely those features that enable recognition of

real-world objects. To test this prediction, we employed a deep convolutional neural net-

work model of the ventral visual stream (Hong, Yamins, Majaj, & DiCarlo, 2016; Yamins

et al., 2014) to characterize high-level perceptual features of drawings. We compared

these feature representations in different layers of the model to those that support the

identification of objects in photos. This led to the discovery of a striking isomorphism in

the representations of object categories in drawings and photos.

A second prediction is that learning how to draw might refine the representations

shared by both drawing and recognition. To test this prediction, we trained people to

draw a set of objects and examined, across several experiments, how their drawings

of these objects improved and what effect this had on recognition of the objects. To

quantify drawing performance, we assessed how well the deep neural network model

could recognize the object being drawn. We found that it performed better in classify-

ing drawings after training and that these improved drawings exhibited less feature-

level overlap with each other, suggesting that practice drawing these objects had dif-

ferentiated their underlying representations. This was further reflected in a psychophys-

ical recognition task as enhanced categorization of the objects that people had learned

to draw.

These findings provide a first direct demonstration, to our knowledge, that visual pro-

duction can alter object representations. They also resonate with a substantial literature

that has documented a positive relationship between drawing expertise and visual cogni-

tion, including tasks tapping perceptual reorganization (Chamberlain, McManus, Riley,

Rankin, & Brunswick, 2013; Kozbelt, 2001), encoding of complex object structure into

visual memory (Perdreau & Cavanagh, 2014, 2015; Rosenblatt & Winner, 1988), and

attentional selection of relevant features to include in depictions (Kozbelt, Seidel, ElBas-

siouny, Mark, & Owen, 2010; Ostrofsky, Kozbelt, & Seidel, 2012). One limitation of the

typical approach taken in these prior studies is that measuring correlations between draw-

ing expertise and visual task performance across individuals cannot provide direct evi-

dence for causal relationships between domains. By experimentally manipulating

experience drawing specific objects within-participant and measuring the consequences of

this experience on subsequent drawing or recognition of those objects, our study directly

tests for such a causal relationship at the granularity of individual objects.

Outside the realm of drawing expertise, figurative drawings have long provided inspira-

tion for scientists investigating the representation of object concepts in early life
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(Karmiloff-Smith, 1990; Minsky & Papert, 1972). This work has revealed several impor-

tant insights into the development of children’s ability to include semantically relevant

information in their drawings (Light & Simmons, 1983; Sitton & Light, 1992), and to

modify their drawings according to the task context (Davis, 1983). Other studies have

employed drawing tasks to reveal altered semantic (Bozeat et al., 2003) and spatial (Val-

lar, 1998) representations in clinical populations. In each of these literatures, a major bar-

rier has been the lack of principled quantitative measures of high-level perceptual

information in drawings. As such, previous studies employing drawing tasks have typi-

cally relied on qualitative assessments of drawings based on provisional criteria specific

to each study, or ad hoc quantitative criteria (Goodenough, 1963), limiting their ability to

make detailed predictions on new tasks or datasets.

The approach taken here of using deep convolutional neural network models to charac-

terize the high-level properties of drawings enhances the scientific potential of visual pro-

duction as a window into human perception and learning. Higher layers of these models

both capture adult perceptual judgments of object shape similarity (Kubilius, Bracci, &

de Beeck, 2016) and predict neural population responses in categories throughout object-

selective cortex (G€uc�l€u & van Gerven, 2015; Khaligh-Razavi & Kriegeskorte, 2014;

Yamins et al., 2014). Thus, features learned by these models provide a principled choice

of basis for extracting high-level perceptual features from arbitrary visual inputs—includ-

ing drawings—and measuring changes in their perceptual properties as a consequence of

learning. While there is precedent for such model-based analyses of sketches in the

machine learning literature (Sangkloy et al., 2016; Yu, Yang, Song, Xiang, & Hospe-

dales, 2015), measuring and explaining human learning with these models is innovative

and could find broad applicability across many fields, including cognitive development,

cognitive neuropsychology, education, communication, and human–computer interaction.

2. Generalized object representations

Recognition of visual objects is achieved by a set of hierarchically organized brain

regions known as the ventral visual stream (Goodale & Milner, 1992; Malach, Levy, &

Hasson, 2002; Rolls, 2000). Simple visual features encoded in lower areas (e.g., orienta-

tion, spatial frequency in V1) are successively combined and transformed into more com-

plex features across levels of the hierarchy (Gross, Rocha-Miranda, & Bender, 1972;

Hung, Kreiman, Poggio, & DiCarlo, 2005), allowing for read out of abstract object prop-

erties from higher areas (e.g., category, identity in inferior temporal [IT] cortex).

Recently, these computations have been modeled using deep convolutional neural net-

works. Such models can approach human-level performance in challenging object recog-

nition tasks and learn features that predict neural population responses in multiple sites

along the ventral stream, including V4 and IT (G€uc�l€u & van Gerven, 2015; Khaligh-

Razavi & Kriegeskorte, 2014; Krizhevsky, Sutskever, & Hinton, 2012; Yamins et al.,

2014). As such, they present an attractive candidate for investigating object recognition

when it requires invariance across image domains, such as the recognition of drawings.
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We tested the hypothesis that training a deep convolutional neural network to recognize

photographs of objects across variable views (Hong et al., 2016; Yamins et al., 2014) would

provide a sufficiently robust basis set of high-level features to enable the model to also recog-

nize simple sketches of objects (Fig. 1A). We further predicted that the model’s representa-

tions of sketches and photographs should become progressively more similar across

successive layers, and peak at the highest layer (approximating IT), consistent with the notion

that sketches of objects possess the same abstract features used to recognize natural objects.

However, because of large differences between sketches and photographs at the pixel level,

we expected their representation in early layers of the model to be much more distinct.

3. Methods

3.1. Imageset

We obtained 8,400 drawings of 105 common, real-world objects from an existing cor-

pus (Eitz et al., 2012). From the Imagenet database (Deng, Dong, Socher, Li, Li, & Fei-

Fei, 2009), we acquired 22,843 photographs of the same 105 objects, depicting diverse

exemplars from each object category embedded in natural backgrounds.

3.2. Computational model

We extracted the features of drawings and photos using a deep convolutional neural

network model that had been developed using hierarchical modular optimization, a proce-

dure for efficiently searching among mixtures of convolutional neural networks for candi-

date hierarchical model architectures that achieve high performance on basic-level object

recognition (Yamins et al., 2014). This training procedure was performed on an indepen-

dent image dataset containing millions of photographs from hundreds of object categories

other than the 105 categories in our study (Deng et al., 2009). In addition to approaching

human-level performance in recognizing these objects, the higher layers of the model

quantitatively predict neural population responses in high-level visual cortex (e.g., V4

and IT; Hong et al., 2016; Yamins et al., 2014). As such, this model was an attractive

candidate for investigating object recognition invariant to image domain.1

3.3. Representational distance analysis

Each image produces a pattern of feature activations at every layer in the model, each

pattern being equivalent to a vector in a feature space with the same number of dimen-

sions as units in that layer. Separately for the drawing and photograph domains, we aver-

aged the feature vectors within each object class for a given layer. To evaluate similarity

between domains at each layer, we computed both the Pearson correlation distance

(1 � r) between feature vectors for corresponding classes in each domain. We also com-

puted the matrix of Pearson correlation distances between class vectors within-domain
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Fig. 1. (A) Features extracted from drawings and photos using a deep convolutional neural network model

optimized to recognize objects in photographs but not drawings. (B) Representational distance matrices of

model features for each image domain. (C) Cross-domain similarity between image domains increases as a

function of model layer. Error bars represent 1 SEM (D) Human and model recognition performance (d’) was

highly consistent across objects (r = .649, p < .001).
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Fig. 2. (A) Participants randomly assigned two object categories. (B) During training, participants repeatedly

drew four objects in one category (Trained). Before and after training, participants drew the remaining four

objects in that category (Near), and the objects in the second category (Far). (C) On each trial, participants

were cued to draw an object. (D) The neural network model guessed the identity of the drawn object in real

time. The rank of the cued object in the ordered list of guesses was used to track changes in performance.

(E) Sample drawings correctly classified by the model and examples that induced model confusion. (F) Mean

target rank by training repetition number. (G) Proportion of trials on which target rank was within the top k
labels, by training repetition number. (H) Change in performance for Trained and Near versus control Far

objects. (I) Change in mean feature distance between objects in Trained and Near versus Far conditions. (J)

Change in root-mean-squared feature distances among early (first three) and late drawings (final three) of

Trained objects. *p < .05, **p < .01. ***p < .001. Error bars represent within-participant SEM.
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(Kriegeskorte et al., 2008). Formally, this entailed computing: RDMðRÞij
¼ 1� covðr~i;r~jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðr~iÞ�varðr~jÞ
p , where r~i and r~j are the mean feature vectors for the ith and jth

object classes, respectively. Each of these 105x105 representational dissimilarity matrices

(RDMs) provides a compact description of the layout of objects in the high-dimensional

feature space inherent to each layer of the model (Fig. 1B). Following Kriegeskorte et al.

(2008), we measured the similarity between object representations in different layers by

computing the Spearman rank correlations between the upper triangle of RDMs for those

corresponding layers.

Estimates of standard error for the Spearman correlation between RDMs (i.e., between

domains or between layers) were generated by jackknife resampling of the 105 object

classes. This entails iterating through each of the 105 subsamples that exclude a single

class, computing the correlation on each iteration, then aggregating these values. Specifi-

cally, the jackknife estimate of the standard error can be computed as:

SEðjackknifeÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1
n

Pn
i¼1ð�xi � �xð:ÞÞ2

q
, where �xi is the correlation based on leaving out the

ith object class and �xð:Þ ¼ 1
n

Pn
i �xi, the mean correlation across all subsamples (of size

104). This estimate of standard error allows us to construct 95% confidence intervals and

compute two-sided p-values for specific comparisons (Efron, 1979; Tukey, 1958).

3.4. Classification of drawings

Model features were also used to train 105-way support vector machine (SVM) classi-

fiers (http://scikit-learn.org/) with L2 regularization to evaluate the degree to which cate-

gory information was linearly accessible in each model layer. Linear classifiers determine

a linear weighting of the feature activations which best predicts classification labels on a

sample set of training images. Predictions are then made for images held out from the

training set, and accuracy is assessed on these held-out images. The robustness of classi-

fier accuracy scores was determined using stratified 5-fold cross validation on 80% train/

20% test class-balanced splits.

3.5. Results

Feature vectors corresponding to the same class were more highly correlated than those

between classes at all layers (p < .001), but this correspondence was stronger in the top

layer (rtop = .223) than in the bottom (rbottom = .072), or any other layer (p < .001). The

same pattern was expressed in the representational dissimilarity matrices (RDMs), with

matrices from the top layer exhibiting high similarity (r = 0.547, p < .001), and those from

the bottom exhibiting low similarity (r = .144, p < .001). Indeed, similarity increased over

successive layers in the model (Spearman correlation, r = .943, p < .001; Fig. 1C). Consis-

tent with the representational distance analyses, the linear classifier was highly accurate for

the top layer (64.8% vs. chance = 0.95%, SEM = 1.1% across five cross-validation splits),

and substantially more so than for the bottom layer (18.6%, cross-validated, SEM = 0.6%).
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The model was trained to identify photographs based on human-provided labels, so we

interpret this successful recognition of drawings as mirroring how humans would recog-

nize the drawings. To validate this assumption, we recruited an independent cohort of

human participants (N = 327) to provide labels for drawings from a subset of these cate-

gories. As expected, human and computer recognition performance (d’) was highly con-

sistent across objects (r = .649, p < .001; Fig. 1D). Thus, the model’s pattern of correct

identifications and confusion errors was similar to that of humans performing the same

task.

Together, these results show that building a computational model that achieves the

level of visual abstraction required to recognize real-world objects under high image vari-

ation yields converging feature representations for object drawings and photographs. In

other words, the high-level features that support natural object recognition are captured in

drawings, allowing a model embodying these features to easily generalize to artificial line

drawings. This is consistent with our broader hypothesis that the abstract representation

of an object formed during recognition may provide the basis for producing a recogniz-

able image of the object by drawing. A further implication of these results is that draw-

ings may be so effective at conveying visual concepts in part because they take

advantage of computational mechanisms already in place (i.e., along the ventral stream)

to extract abstract information, such as object identity, from natural visual input.

4. Visual production training

If drawing an object involves accessing the representation used to recognize it, and

then learning how to draw the object better may refine this representation and improve

recognition. Here we test for improved recognition in the deep neural network model; in

the next section we test for improved recognition in humans. We hypothesized that train-

ing people to draw objects would enhance the model’s ability to recognize their drawings

of these objects, and that this occurs because they learn to emphasize those features of an

object that distinguish it from other objects. This makes the specific prediction that the

model’s top-layer representations of the trained objects should differentiate from each

other. Such differentiation has traditionally been induced using recognition tasks (Gold-

stone, 1998), but here we examine it as a consequence of training in visual production.

4.1. Methods

4.1.1. Stimuli
A natural starting point for examining learning is to identify objects for which

untrained participants have trouble producing recognizable drawings—that is, objects

whose drawings are frequently confused by the model with drawings of other objects. In

order to identify groups of objects that are drawn similarly prior to training, we applied a

clustering algorithm (affinity propagation with damping = 0.9; Frey & Dueck, 2007) to

the model’s top-layer feature representation of drawings from the same dataset analyzed
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above (Eitz et al., 2012). This yielded 16 clusters containing between 3 and 20 objects

each. Among clusters containing at least 8 objects, we defined 8 “visual categories” con-

taining 8 objects each (Table 1). Each participant was randomly assigned two of these

categories, and only the 16 objects from these two categories appeared as drawing targets

during their session.

4.1.2. Participants
A total of 593 unique participants, who were recruited via Amazon Mechanical Turk

(AMT), completed the experiment. Owing to the novelty of the paradigm employed in

this study, we could not rely upon preexisting studies to estimate effect sizes. Instead, we

used our experimental design as a guide to develop a target sample size that included a

few participants (i.e., at least 5) for each of the 56 possible assignments of condition

(Trained, Near, and Far) to pairs of categories (out of eight total), and for each of the

image-cue and verbal-cue task conditions (see below). Participants were paid a base

amount of $1.50 and up to a $3.00 bonus for high task performance. In this and all subse-

quent studies, participants provided informed consent in accordance with the Princeton

IRB. Allocation of participants to groups was conducted anonymously via AMT, and thus

the investigators were effectively blinded to the assignment of participants to group and

condition during data collection.

4.1.3. Experimental procedure
Training was conducted via an online game we developed (“Guess My Sketch”), in

which participants (N = 593) were repeatedly cued by one avatar to communicate particu-

lar object concepts to another avatar representing the model by producing drawings

(Fig. 2C). Participants initiated each trial by clicking a central gray square (500 9 500

pixels). Then, a red avatar cued participants to draw an object. Approximately half of

participants were cued with a verbal label (N = 282) and the other half with a trial-unique

photo (N = 311). In the image-cue condition, each trial used a unique photograph of the

Table 1

Objects belonged to eight visual categories, each containing eight items. These categories were derived by

applying a clustering procedure to the high-level feature representation of drawings from the Eitz et al.

(2012) corpus. Mutual confusion rate reflects the percentage of human labeling errors that involved another

object belonging to the same category as the target object (uniform = 11%)

Category Objects Mutual Confusion Rate

1 Airplane, blimp, crocodile, fish, helicopter, ship, trumpet,violin 24.4%

2 Bed, bench, chair, couch, harp,ladder, laptop, table 59.0%

3 Bell, frying pan, hat, pear,shoe, socks, tablelamp, teapot 29.3%

4 Cat, cow, elephant,horse, kangaroo, pig, rabbit, sheep 55.7%

5 Banana, dolphin,duck, mosquito, mouse, seagull, shark, swan 41.0%

6 Floor lamp,fork, guitar, hammer, microphone, shovel, snake, spoon 37.1%

7 Cactus, crab, giraffe, lobster, palm tree, pineapple, tiger, zebra 39.2%

8 SUV, bicycle, bus, motorbike, race car, train, truck, van 77.3%
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target object on a natural background and participants were instructed to “make a drawing

in which someone else is likely to recognize the object depicted” but were informed that

the drawing did not have to exactly depict what was in the photo. In the verbal-cue con-

dition, the label of the target object appeared below the square. After cue offset, the blue

avatar appeared, prompting the participant to begin drawing. Drawing responses were col-

lected on a digital canvas (500 9 500 pixels) embedded in a web browser window using

Raphael Sketchpad (https://ianli.com/sketchpad). Participants drew in black ink (pen

width = 5 pixels) using the mouse cursor, and were not able to delete previous strokes.

There were no restrictions on how long participants could take to make their drawings,

and on average they spent 30.7 s per drawing (95% confidence interval = 8–86 s).

When the participant’s drawing was submitted on each trial, the blue avatar listed its

top three guesses as to the identity of the cued object, thus providing participants with

immediate feedback about the recognizability of their drawing. Participants earned points

if any of these guesses were correct, proportional to its position in the top three. These

guesses were generated by submitting the drawing bitmap to the model running on a ser-

ver in real time and passing the top-layer responses though a 64-way SVM linear classi-

fier pre-trained on photos of the objects from all categories used in this study. The

classifier returned a list of 64 margin values, corresponding to the level of confidence that

the test image belonged to each object class (Fig. 2D,E).

The rank of the cued object in this list provided a measure of the goodness-of-fit of the

submitted drawing to the cued object’s representation in the model and thus served as our

primary measure of drawing recognizability (lower rank means better performance). By

mapping raw classifier margin values to the rank scale, this ensures that scores for all

drawings fall in the same interval, enabling straightforward comparisons across repetitions,

objects, and participants. Nevertheless, even when we conduct our main analyses on the

raw margins, we find a similar pattern of results. The three objects with highest rank were

returned to the participant as guesses. In the verbal-cue condition, when none of the top

three guesses were correct, the rank of the target object in this ordered margin list was also

returned to the participant (e.g., “Too bad. . . ‘giraffe’ would have been my 9th guess.”).

During the training phase, participants drew four randomly selected objects in one cat-

egory (Trained) multiple times. Before and after training (Fig. 2B), participants produced

one drawing of each of those objects, of each of the other four objects in that category

(Near), and of all of the objects in the second category (Far). These conditions allow us

to assess the specificity of training effects: Trained objects provide a measure of object-

specific learning, Near objects provide a measure of category-specific learning, and Far

objects provide a baseline measure of generic task-level or motor improvement. We

hypothesized that the Trained objects would become more recognizable to the model after

training, relative to both their recognizability before training and to the recognizability of

the Near and Far objects.

4.1.4. Model validation: Category assignments
To validate the model’s representations of the drawings from this experiment, we

extracted their features from the top layer. Separately for the image-cue and verbal-cue
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conditions, we computed the average feature vectors for all drawings of the same object

and computed correlation matrices of these average vectors. In both cue conditions, the

objects within each of the eight categories were more similar to each other (image-cue:

r = .633, verbal-cue: r = .623) than to objects in other categories (image-cue:

r = �0.083, verbal-cue: r = �0.072; ps < .001 based on object-level resampling). The

matrices from the two cue conditions were also highly similar to each other (Spearman’s

r = .897), showing that the model successfully captured object identity in both task set-

tings. Moreover, both matrices were highly similar to that computed based on top-layer

features of drawings of these 64 objects from the Eitz et al. (2012) drawing corpus (im-

age-cue/original: r = .789; verbal-cue/original: r = .818).

4.1.5. Model validation: Classification of drawings
Across all participants and trials, the model achieved top-1 classification accuracy of

39.8%, top-4 accuracy of 60.5%, and top-8 accuracy of 71.0%, well above chance

(1.6%). Relatively lower classification performance compared to that obtained on the

original sketch corpus by Eitz et al., (2012) may not be surprising, since we deliberately

designed the stimulus set to include objects that would be more frequently confused with

one another, within category. Moreover, given that we were primarily interested in mea-

suring relative changes in model recognition of participants’ drawings across different

training conditions, this was not a major source of concern.

4.1.6. Model validation: Measuring human drawing recognition
To validate object-label feedback from the classifier, an independent cohort of human

participants (N = 327) provided labels for each drawing from the image-cue condition

from the set of 64 object labels. We found that human and model discrimination perfor-

mance (d’) were highly correlated across objects (Spearman’s r = .649, Fig. 1D). We

additionally computed the mutual confusion rate, defined as the percentage of (first-guess)

labeling errors that involved another object belonging to the same category as the target

object. If these errors were spread uniformly over all distractors, the expected mutual

confusion rate would be: 7/63 = 0.11. All categories exhibited mutual confusion rates

reliably above uniform responding (across objects within category: t(7)s > 2.76,

ps < .028), which further validates category assignments. Overall human identification

accuracy was 70.2%, which unsurprisingly exceeded model top-1 classification accuracy,

and may be explained by the vast amount of additional experience adult human observers

have had with a wider variety of visual inputs and tasks than the model.

4.1.7. Statistics
Before performing statistical tests, we visualized data and examined assumptions.

Quantile-quantile plots revealed a reasonable approximation to normality, an assumption

of the paired t test. Mauchly’s test of sphericity indicated that the assumption of spheric-

ity for the repeated-measures ANOVAS had not been violated. All p-values reported are

two-sided. We also found that employing non-parametric analysis techniques (i.e., boot-

strap resampling) gave similar results, suggesting that the choice of test (and assumptions
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therein) does not impact our conclusions. We did not have a prespecified way of handling

outliers in this study, so we report analyses with all data included.

4.2. Results

Because objects were randomly assigned to condition across participants, we expected

no differences in mean rank for Trained, Near, and Far objects in the pretest. Indeed, a 3

(condition: Trained, Near, Far) 9 2 (cue type: word, image) repeated-measures ANOVA

revealed no main effect of condition (F(2, 587) = 1.16, p = .315). There was a main

effect of cue type (F(2, 587) = 14.8, p < .001), with image-cue performance (M = 8.69,

SD = 6.55) exceeding word-cue performance (M = 10.24, SD = 7.58). While we did not

have strong a priori hypotheses about the effect of cue type, one possibility is that image

cues may have led to better performance by reminding participants of diagnostic visual

details that may be more difficult to retrieve from semantic memory based on the verbal

cue alone (e.g., spatial relationships between parts of a bicycle). Regardless, cue type did

not interact with condition, as expected (F(2, 587) = 0.147, p = .863).

During the training phase, participants drew the four Trained objects five times each,

in a randomly interleaved order. To assess changes in performance over training, we

computed the mean rank across objects for each repetition and assessed its relationship to

repetition number. Although there was large variation across participants, the trend across

repetitions was reliably negative (mean Spearman’s r = �0.075; t = 3.37, p = .0007),

demonstrating that drawings improved with practice (Fig. 2F). In order to better under-

stand what was driving these changes in mean target rank, next we computed the propor-

tion of trials on which the target rank was within the top-k values, for

k 2 {1, 4, 8, 16, 32}, across repetitions. Visualizing this time series revealed the largest

gains for lower values of k, indicating that much of the improvement could be explained

by the target rank value moving into the top few positions (Fig. 2G).

To assess learning across conditions, we compared differences between pretest and

posttest performance (Near and Far objects only appeared during these phases). For each

object in all conditions, we calculated the change in rank (Drank = rankpost � rankpre),
then averaged these Drank values across objects in each condition. We then performed the

same type of ANOVA across participants as for the pretest analysis, revealing a significant

difference in rank change between conditions (F(2, 1182) = 7.67, p < .001). There was

no main effect of cue type (F(1, 591) = 1.66, p = .198), nor an interaction between con-

dition and cue type (F(2, 1182) = 0.162, p = .851), so we collapse across cue type in

subsequent analyses. Drawings of Trained objects were better recognized by the model

following training (Drank < 0: t(592) = 4.04, p < .001, two-sided in this and all subse-

quent t-tests); no such improvement was found for Near objects (t(592) = 0.511,

p = .609) or Far objects (t(592) = 1.22, p = .223), suggesting that training had not led to

general improvements at the category level or task level. The improvement for Trained

exceeded that of Near (t(592) = 3.44, p < .001) and Far (t(592) = 2.91, p = .004), which

themselves did not differ (t(592) = 1.15, p = .252). Taken together, these results indicate

that production training primarily resulted in object-specific benefits (Fig. 2H). In
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particular, improved classification performance for Trained objects was driven primarily

by an increase in the hit rate (+5.2%, percentage of trials, pooling across participants;

p < .001, bootstrap resampling of participants), with marginally significant decreases in

the rate that Trained drawings were misclassified as being Near (�1.3%, p = .080) or Far

(�1.2%, p = .082) objects.

The improved rank score for Trained objects shows that their high-level feature repre-

sentations became more linearly discriminable. We investigated two potential sources of

this differentiation (not mutually exclusive): increased feature distances among Trained

objects (“separation”) or decreased feature variance of individual Trained objects

(“sharpening”).

To test for separation, we first extracted the model’s top-layer feature representation of

all drawings from the pretest and posttest and computed a matrix of the correlation dis-

tances between these feature vectors (Fig. 2I). Then, for each Trained object, we com-

pared its distance before training from the other Trained objects before training (pre/pre)

to its distance from the other Trained objects after training (pre/post). The same differ-

ence was calculated for Near and Far objects as controls. Increased distance for pre/post

versus pre/pre in the Trained condition relative to the Near and Far baselines would indi-

cate that drawing induced separation of object representations. Consistent with this possi-

bility, a one-way repeated-measures ANOVA revealed a main effect of condition (F(2,
1773) = 3.12, p = .044). Planned comparisons confirmed that Trained objects separated

more than Near objects (t(592 = 3.48, p = .0005) and Far objects (t(592) = 3.46,

p = .0005), which did not differ from each other (t(592) = .005, p = .996).

To test for sharpening, we tracked changes in the distance between feature vectors

from the top layer across successive drawings of the same object during training. For

each Trained object, we constructed a distance matrix relating drawings across all repeti-

tions (Fig. 2J); this analysis was not possible for Near or Far objects because they were

only drawn at the start and end of the study. We quantified change in feature variability

in two ways: by comparing root-mean-squared feature distances among early drawings

(first three) and late drawings (final three), and by measuring the trend in feature dis-

tances across pairs of successive drawings. We found that late drawings were reliably

more similar to one another than early drawings (mean D = �0.061, SEM = 0.005,

p < .001, bootstrap resampling of participants), and that this reflected a gradual decrease

in the amount by which successive drawings differed across repetitions (Spearman’s

r = �.211, SEM = 0.022, p < .001, bootstrap resampling of participants).

To evaluate the respective contributions of separation and sharpening to the improve-

ment in drawing performance (as quantified by the model), we regressed both of these

measures on the change in rank for Trained versus Far objects. Across participants, we

found that sharpening (b = 7.62, t(590) = 2.53, p = 0.012) but not separation (b = 0.02, t
(590) = 0.004, p = .997) predicted model performance. This suggests that decreased vari-

ability was most directly responsible for the increased discriminability of Trained objects.

Taken together, these results are consistent with the notion that people had learned

through practice which features were most diagnostic of the Trained objects, leading to

more consistent expression of these distinguishing features in their drawings over time.
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While this study cannot disentangle the contribution of task practice from the contribution

of semantic feedback from the model to this learning, further insight could be gained

from experiments which do separately manipulate task practice, as well as the availability

and type of feedback.

5. Controlling for visual exposure to drawings

The results so far have been interpreted as a consequence of repeatedly drawing the

Trained objects. However, as these objects were being drawn, participants also received

additional perceptual experience with drawings of them. This additional visual experience

with drawings of the Trained objects suggests an alternative explanation for the benefit

for Trained over Near and Far objects, which were only encountered in the pretest and

posttest. To evaluate this alternative, we conducted two additional experiments that con-

trolled for the amount of visual exposure to sketches received during training.

5.1. Methods

5.1.1. Control experiment 1: Viewing finished drawings
For each of the 593 participants in the original cohort, we recruited a new participant

to repeat the same sequence of trials. They were paid a base amount of $2.00 and up to a

$3.00 bonus for high task performance. However, instead of producing a drawing on each

trial of the training phase, they were presented with the same cue provided to their

matched participant (i.e., image or verbal cue), then the finished drawing produced by the

matched participant. To encourage participants to inspect the sketch, participants had the

goal of predicting the model’s top guess for the drawing. In some ways, this provides

even more perceptual experience, as they always viewed the completed, most recogniz-

able drawing, rather than incomplete, ambiguous versions. Participants typed their

response into a text field, and only the labels of the 64 objects in the set were accepted.

They had to wait 4,000 ms before being able to submit their response. Participants drew

all objects once each before and after training, allowing us to measure the consequences

of viewing finished drawings on drawing performance.

5.1.2. Control experiment 2: Observing stroke dynamics
Again, 593 naive participants were recruited via AMT and paid a base amount of

$2.00 and up to a $3.00 bonus for high task performance. Again, each participant was

matched with one of the original participants and received the same sequence of trials.

On each training trial, they were given the same cue provided to their matched partici-

pant, then observed a stroke-by-stroke reconstruction of the drawing produced by their

matched participant, with a stroked added every 500 ms. They performed the same pre-

diction task as in Control experiment 1 with 4,000-ms waiting period from the start of

the animation, ensuring that at least eight strokes appeared (or all of the strokes if eight
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or fewer). Participants drew all objects once each before and after training, allowing us to

measure the consequences of observing stroke dynamics on drawing performance.

5.2. Results

We found that viewing finished drawings yielded only modest changes in drawing per-

formance for Trained objects (t(592) = 1.72, p = .086), and no reliable improvement for

Trained objects relative to Far (t(592) = 0.580, p = 0.562) or Near objects (t(592) = 1.21,

p = 0.228). Again, neither Near (t(592) = 0.160, p = .873) nor Far (t(592) = 1.27,

p = 0.205) objects improved relative to their pretest baseline, nor differed significantly

from one another (t(592) = 0.714, p = .475). Together, these results suggest that mere

exposure to drawings is insufficient for improving the ability to produce recognizable

drawings.

Although viewing completed drawings did not improve drawing performance, this only

captures part of the perceptual experience of drawing. In particular, completed drawings

are the result of composing a series of individual strokes into parts, and parts into whole

drawings, over time. We hypothesized that observing these stroke-level dynamics may be

more beneficial for learning how to draw, because they convey information about the pro-

cedure for composing a drawing that may be subsequently used to support successful

drawing.

We found that observing dynamic reconstructions of drawings produced reliable pre–
post improvement for Trained objects (t(592) = 2.880, p = .004), which significantly

exceeded that of Far (t(592) = 2.09, p = 0.037) and Near (t(592) = 2.55, p = 0.011)

objects. These findings suggest that observing the process of drawing construction

improves participants’ subsequent ability to make recognizable drawings of those objects

they had previously observed being drawn. We again found no reliable pre–post changes
in performance for Near (t(592) = 0.448, p = .655) or Far (t(592) = 0.606, p = .545)

objects, and these conditions did not differ from one another (t(592) = 0.751, p = .453).

In order to evaluate whether learning differed according to the training modality (i.e.,

drawing vs. viewing finished drawings vs. observing dynamic reconstructions), we com-

pared the degree of improvement for Trained objects across modalities. We found no reli-

able difference between the drawing and dynamic modalities (t(592) = 0.929, p = .353),

and a marginal difference between the drawing and static modalities (t(592) = 1.81,

p = 0.071). However, we caution against strong conclusions about the relative effective-

ness of these different training modalities based on these data alone. Rather, exploring

how differences in training modality (e.g., production vs. observation) relate to subse-

quent performance would be a fruitful target for future research.

6. Consequences for object recognition

Above we showed that training participants how to draw objects resulted in drawings

that were more recognizable to a deep neural network model of the ventral visual stream.
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The model was pre-trained and its parameters fixed, so these changes in the rank of the

cued object can be interpreted as evidence that the object representations of participants

were refined by the training. However, although suggestive, this is only indirect evidence

for the claim that these refined representations are the ones in the ventral visual stream

that subserve human object recognition abilities. Participants may have improved their

drawings without any change in their internal visual representation of these objects (i.e.,

in the ventral stream), for example, as a result of object-specific motor learning of stroke

sequences.

To evaluate more directly how learning to draw impacts human recognition, we con-

ducted a transfer study (N = 72) in which the drawing training phase was bookended by

a recognition pretest and posttest. Motivated by the earlier finding that the feature repre-

sentation of Trained objects in the top, IT-like layer of the model differentiated with

training, we hypothesized that drawing would increase the perceptual discriminability

between Trained objects. We tested this hypothesis by having participants discriminate

morphed versions of these objects (Goldstone, 1998; Livingston, Andrews, & Harnad,

1998), predicting that training would cause morphs between Trained objects to be per-

ceived as more distinct—that is, morphs in the middle of the range should become more

consistently recognized as the majority object, resulting in a steeper slope of the psycho-

metric function relating the morphing proportion to object labels. The rationale for this

prediction is that differentiation should reduce features shared between object representa-

tions such that intermediate morphs are represented more in terms of the distinguishing

features of the majority object, supporting more consistent identification of that object.

6.1. Methods

6.1.1. Stimuli
The four objects in each of the two categories were selected to allow the construction

of a quartet of 3D mesh models (Autodesk Maya) sharing the same vertices, thereby

enabling quantitatively precise morphing and full control over category-orthogonal image

parameters (e.g., pose, size, background). This resulted in six axes (“morphlines”) con-

necting all pairs of objects within each category and 12 total axes for both categories.

For each axis, we derived a perceptually uniform space from which to sample morphs, in

order to increase sensitivity for measuring the slope of the psychometric function. As a

first step, we rendered a series of 12 morphs for each axis, linearly interpolated between

the endpoint objects. Each morph was rendered from a 10∘ viewing angle (i.e., slightly

above) at a fixed distance on a gray background in 40 viewpoints (i.e., each rotated by an

additional 9∘ about the vertical axis). We recruited a separate cohort of 40 participants

via AMT to provide 288 identification judgments each for random subsets of these

morphs, yielding 80 baseline judgments per morph (two per viewpoint). For each morph

(e.g., sedan/limo), we computed the proportion of trials that the morph was identified as

being one of the endpoint objects (e.g., sedan) and fit these data with a logistic function

to derive a population psychometric curve. We used this curve to estimate the morphing

levels that produced 0% (or the minimum), 20%, 40%, 60%, 80%, and 100% (or the
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maximum) identifications as one of the endpoint objects. The resulting six morphs per

axis evenly spanned the subjective transition between endpoints and were included in the

training study (Table 2).

6.1.2. Participants
Based on initial piloting, we developed a target sample size of 72 participants, across

whom all condition and object assignments would be fully counterbalanced. Of the origi-

nal group of 72 participants recruited from AMT, 25 were excluded because their data

could not be fit with a logistic function in at least one condition either before or after

drawing training. This occurred either because of non-monotonicity in their psychometric

curves (i.e., inconsistent responding) or hypersteepness of the slope parameter (i.e.,

approaching infinity). We recruited additional participants to fill these sessions to ensure

that the design was counterbalanced. In total, 97 participants completed the task and

received $5.00.

6.1.3. Experimental procedure
We adapted our training task in several ways to enhance our ability to measure the

hypothesized perceptual changes. Estimating the parameters of psychometric curves

requires many trials, so we used a reduced stimulus set of two categories with four

objects each (furniture: table, bench, bed, chair; cars: sedan, limo, SUV, smartcar;

Fig. 3A). To enable morphing of these objects, we commissioned an artist to design 3D

models of each object with the same number of vertices per category, and then generated

intermediate objects via interpolation between these endpoint objects. To increase the

probability of inducing transfer effects, we also increased the number of training trials

per object from 5 to 16. Finally, we removed feedback from the training phase to more

cleanly isolate the consequences of production as such.

Each participant was randomly assigned one of the two categories and was trained to

draw two of the objects in that category (Trained). The other two objects (Control) served

as a baseline for changes in recognition. At the beginning of each session, participants

were familiarized with each of the eight endpoint objects that might appear. On each

familiarization trial, an animation of one of the objects continuously rotating was played.

Objects appeared on a gray background at the same viewing angle, distance, and view-

points used in the experiment. The name of the object was displayed in large font above

the animation (“This is a SEDAN.”). The participant viewed the object completing at

least one full rotation (6 s) before proceeding to the next object.

Table 2

Endpoint objects included in transfer experiments

Category Objects

Cars Sedan, limo, SUV, smartcar

Furniture Table, bench, bed, chair
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After familiarization, participants completed three phases of the experiment: pretest

discrimination, drawing training, and posttest discrimination. On each drawing training

trial, participants were cued with one of the Trained endpoint objects (trial-unique view-

point) and then made a drawing of it. Trained objects were drawn 16 times, each during

the training phase (32 total trials), in a randomized order and cued with trial-unique view-

points. No feedback was provided but the task was otherwise identical to the earlier

drawing training study.
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Fig. 3. (A) Stimuli in the perceptual discrimination experiment. (B) Before and after training, participants

performed a recognition task in which they discriminated morphs of the two Trained objects, or the two Con-

trol objects. (C) Psychometric data were fit with a logistic function, whose slope was predicted to increase

after training. (D) Change in slope for Trained/Control conditions in each group. *p < .05, **p < .01. Error

bars represent 1 SEM.
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Before and after training, participants were tested on perceptual discrimination of

morphs of the two Trained objects or morphs of the two Control objects. All 12 morphs

(six morphs per pair) were shown 12 times each during both the pretest and posttest,

always from a trial-unique viewpoint. On each trial, participants were briefly presented

(1,000 ms) with the morph and made a forced-choice judgment about which of the two

objects they saw by clicking one of two labels that appeared below the image (Fig. 3B).

The assignment of labels to buttons was randomized across trials. Participants who did

not achieve greater than 80% accuracy on the unambiguous 0%/100% endpoint objects in

the pretest phase did not proceed to the training phase.

For each participant and for both the pretest and posttest, we constructed psychometric

curves for the Trained and Control object pairs, relating different morphing levels to the

proportion of trials (out of 12) in which a given object was chosen. These curves were fit

with a logistic function pðxÞ ¼ 1
1þ e�kðx�x0Þ using the Levenberg-Marquardt algorithm as

implemented in Scipy (https://www.scipy.org/), where p(x) is the proportion of trials on

which the first object was chosen, k represents the slope, and x0 the midpoint of the sig-

moid. Our key prediction concerned the slope parameter from the fitted logistic curve: If

drawing enhances the discriminability of Trained objects, then morphs in the middle of

the range to become more consistently recognized as the majority object, and the slope

parameter k for the Trained pair should increase from pretest to posttest more than for

the Control pair (Fig. 3C).

6.1.4. Control experiment: Observing stroke dynamics
For each of the 72 sessions in the main experiment, we recruited a naive participant to

repeat the same sequence of trials, except that during the training phase, they observed a

stroke-by-stroke reconstruction of the drawing produced by their matched participant,

with a stroked added every 500 ms. Of this initial new cohort of 72 participants, 16 were

excluded because their data could not be fit with a logistic function in at least one condi-

tion either before or after drawing training. As in the main experiment, we recruited addi-

tional participants to fill these sessions to ensure that the design was counterbalanced. In

total, 88 participants completed the task and received $5.00. Before and after training, all

participants were tested on perceptual discrimination of the Trained and Control object

pairs.

6.1.5. Statistics
Before performing statistical tests, we visualized data and examined assumptions.

Quantile-quantile plots revealed that data did not follow a normal distribution, so classical

inference tests (e.g., ANOVA, t test) that rely upon assumptions of normality were not

appropriate. Instead, we employed bootstrap resampling (Efron & Tibshirani, 1986) to

construct 95% confidence intervals and compute P-values for key parameters and compar-

isons of interest (i.e., change in slope from pretest to posttest). This entailed resampling

72 participants’ worth of data with replacement, then computing the mean, on each of

10,000 iterations, for each experiment. The two-sided p-value was defined as the propor-

tion of these iterations on which this mean fell below zero, multiplied by two.
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6.2. Results

Slope estimates did not differ between Trained and Control pairs during the pretest

(p = .473, bootstrapped resampling), which was expected since there was no difference

between conditions prior to training. After training, the slope for the Trained pair reliably

increased (p = .004; Fig. 3D), and more than for the Control pair (p = .005), whose slope

did not change (p = .533). The threshold parameter did not change significantly for either

condition (Trained: p = .092; Control: p = .308). These results show that visual produc-

tion training can generalize to a recognition task, lending key support to our hypothesis

that production and recognition engage a common high-level representation for objects.

The question raised earlier about the role of perceptual experience during drawing is espe-

cially salient in this study, which employed a perceptual measure. That is, enhanced percep-

tual discrimination for the Trained pair may reflect perceptual learning due to greater visual

exposure to these objects while they were being drawn repeatedly. Although such observation

improved drawing performance in the earlier experiment, we hypothesized that transfer to a

recognition task would require more significant representational changes, as would be induced

by drawing, and thus that this group might not show improved perceptual discrimination. The

rationale for this prediction is that drawing produces continuous visual and haptic feedback,

and such sensory feedback during visually-guided actions has previously been shown to facili-

tate transfer to perceptual tasks (Fan, Turk-Browne, & Taylor, 2016).

Indeed, there was no reliable change in slope for either the Trained pair (p = .475;

Fig. 3D) or Control pair (p = .332), and no difference between these conditions (p = .169).

Moreover, there was an interaction between training group and condition (p = .002), with a

larger increase in slope for Trained versus Control in the participants who were trained to

draw than in those who observed somebody else drawing. The threshold parameter did not

change for either condition (Trained: p = .838; Control: p = .147). These results suggest

that the generalization of drawing training to perceptual discrimination was driven by

aspects of visual production beyond observation of the consequences of action.

It is important to note that the current experiment measures explicit categorization perfor-

mance; thus, it is possible that enhanced discrimination of Trained objects reflects changes in

how these representations are read out to produce a category label, as opposed to changes in

how they are automatically perceived. These possibilities could be disentangled in future stud-

ies that rely on short presentation times and a nonverbal response modality. For example, one

could test how well participants are able to judge whether two briefly presented morphed

objects are the same or different. Faster and more accurate responses on trials where the two

morphs straddle the discrimination boundary between objects as opposed to being on the same

side of the boundary would provide stronger evidence for automatic effects on perception.

7. Discussion

The present study investigated the relationship between the ability to recognize

objects—a biological endowment shared with other species—and to produce images of
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objects by drawing—a relatively recent development from human prehistory. We exam-

ined the hypothesis that these two behaviors are at least partly served by a common rep-

resentational substrate for objects.

We discovered that a deep neural network model trained only on photos succeeded in

recognizing drawings, suggesting that this kind of abstraction can arise from the same

neural architecture evolved to make sense of natural visual inputs (Sayim & Cavanagh,

2011). These findings argue against a strong version of the hypothesis that line drawings

are purely a product of culturally specific conventions (Gombrich, 1969; Goodman,

1976). Rather, they are consistent with evidence from various domains, including devel-

opmental, cross-cultural, and comparative studies of drawing perception. For example,

human infants (Hochberg & Brooks, 1962), people living in remote regions without picto-

rial art traditions and without substantial contact with Western visual media (Kennedy &

Ross, 1975), and higher non-human primates (Tanaka, 2007) are able to recognize line

drawings of familiar objects, even without prior experience with drawings. Moreover,

these findings also provide a computational basis for understanding how line drawings

can drive object recognition so effectively (Biederman & Ju, 1988; Walther, Chai, Caddi-

gan, Beck, & Li, 2011). We also found that learning how to draw increased the discrim-

inability of trained object representations, as quantified by improved recognition

performance and reduced feature overlap in the model and by enhanced discrimination of

trained objects in human participants. These findings are reminiscent of the way other

generative behaviors such as memory retrieval (Crutcher & Healy, 1989; Karpicke &

Roediger, 2008; Slamecka & Graf, 1978) and self-explanation (Chi, De Leeuw, Chiu, &

LaVancher, 1994; Williams & Lombrozo, 2013) can powerfully guide learning.

The learning mechanisms responsible for such changes are not yet known, but a promising

avenue forward is to build on extant theories of how differentiation between mental represen-

tations occurs. Two broad classes of candidate mechanisms may be particularly worthwhile

to test: (a) strengthening of diagnostic features of objects through increased weighting of rele-

vant dimensions (Goldstone, 1998), and (b) weakening of features that overlap between

objects through competitive dynamics (Norman, Newman, Detre, & Polyn, 2006). These

mechanisms are not mutually exclusive, while they do make different predictions about learn-

ing outcomes under certain conditions. For instance, in the context of prolonged competition

between two similar objects (e.g., alternating drawing of sheep vs. goat), the first mechanism

could stabilize and refine object representations in a generalized manner, whereas the second

mechanism would exaggerate differences specifically along the axis separating the competing

objects in representational space. Our observation that increased recognizability of sketches

across training repetitions was accompanied by sharpening of trained object representations,

as measured by reduced feature variability within-object, is in principle consistent with both

strengthening and weakening mechanisms. In order to tease these two mechanisms apart, a

critical variable that future studies might manipulate is the initial similarity between object

representations. Under the strengthening mechanism, diagnostic features are predicted to be

enhanced regardless of the initial similarity between objects. On the other hand, under the

weakening mechanism, diagnostic features that are shared by similar objects are predicted to

be weakened, while non-overlapping diagnostic features are still enhanced.
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Here we found preliminary evidence for the benefits of observational learning for

visual production—that is, observing someone else produce drawings, stroke-by-stroke,

led to reliable improvement in the ability to subsequently produce drawings of those same

objects. This finding raises several important questions regarding the mechanisms respon-

sible for this learning. First, it may be that such drawing demonstrations benefit learning

by directing a learner’s attention to a series of smaller curve segments, thereby making it

easier to encode and later retrieve an effective sequence of actions to produce a recogniz-

able drawing. This could be tested by having participants view a finished drawing, where

each stroke is highlighted in sequence, even in an arbitrary order. Insofar as the decom-

position of the drawing into constituent strokes is critical, this form of observational

learning should also lead to improvement in visual production. Second, it may be that

while observing such demonstrations, learners actively make visual predictions about

where strokes will appear and what they will look like. Insofar as the sequence and

appearance of strokes in a demonstration deviates from what is expected, this visual pre-

diction error may also promote encoding of the demonstrated sequence, thereby improv-

ing subsequent visual production. This could be tested by having participants view the

same strokes presented in the reverse (less predictable) or a shuffled (least predictable)

order. If the predictability of the stroke sequence modulates learning, moderately unpre-

dictable sequences that generate many small prediction errors might enhance learning,

while completely unpredictable sequences may lead to worse subsequent performance.

With regards to both the enhanced-attention and prediction-error mechanisms above, a

reasonable further prediction would be that the benefits of such observational learning

will be generally greater when observing higher quality, more recognizable drawings.

We also found that the benefits of observational learning did not generalize to the per-

ceptual discrimination task. There are multiple potential reasons for this that would be

valuable to distinguish in future work. One possibility is that immediate sensory feedback

from visually guided action may have a disproportionate effect on visual learning (Fan

et al., 2016). If so, then much more observation experience may be required to improve

perceptual decision-making to the same degree. This could be addressed in new experi-

ments by varying the length of the observational learning phase relative to the production

phase. Another possibility is that the lack of task-related reward feedback in this experi-

ment may have had a particularly strong dampening effect on how effectively participants

encoded the observed strokes; this could be addressed in new experiments by employing

an engaging cover task during observation that guides attention to each new stroke.

The claim that visual production recruits and refines the same high-level object repre-

sentation used during visual recognition may appear to be in tension with the distinction

between vision-for-action and vision-for-recognition, which are functionally segregated

into dorsal and ventral streams, respectively (Goodale & Milner, 1992). However, our find-

ings can be reconciled with this view by considering the type of action investigated here.

Namely, our drawing task involves producing a recognizable image of an object held in

mind rather than reaching toward or manipulating a physical object in the world. Couched

this way, the act of drawing coincides with a core function of the ventral stream—the

computation of abstract, geometric properties of objects that are diagnostic of their identity
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(DiCarlo, Zoccolan, & Rust, 2012). We do not claim that ventral stream representations

are sufficient for visual production, as rendering a physical image still requires translating

these features into a motor program to execute the appropriate sequence of actions.

Indeed, future studies could investigate how processes engaged uniquely during visual

production but not recognition affect object representations. For example, the role of motor

execution could be examined by having participants trace over previously made drawings,

and the role of mental construction could be examined by having participants simulate

drawing objects without producing a physical image. The rich sensory feedback generated

during production may play an important role in learning, as the visual traces of current

and prior movements provide an explicit basis for performance monitoring and error-based

updating (Taylor, Hieber, & Ivry, 2013; Wolpert, Diedrichsen, & Flanagan, 2011). In par-

ticular, it may be that such sensory feedback is particularly important for learning how to

realistically render objects from observation, more so than for informal sketching from

semantic knowledge. The functional value of these external traces is important to under-

stand because they are unique to visual production and not shared with other generative

cognitive processes known to influence learning, such as selective attention (Chun &

Turk-Browne, 2007; Fan & Turk-Browne, 2013; Uncapher & Rugg, 2009) and memory

retrieval (Crutcher & Healy, 1989; Karpicke & Roediger, 2008; Slamecka & Graf, 1978).

In the present study, the benefits of training for production and recognition were speci-

fic to the objects participants had practiced drawing. However, a hallmark of learning is

generalization; thus, an important goal for future research is to understand the training

conditions under which participants improve (or worsen) their ability to draw objects they

did not practice, a form of skill learning also known as structural learning or learning-to-

learn (Braun, Aertsen, Wolpert, & Mehring, 2009; Lake, Salakhutdinov, & Tenenbaum,

2015). Various factors merit detailed investigation, including the amount of training, vari-

ability in the objects and categories practiced (Schmidt & Bjork, 1992; Wrisberg & Liu,

1991), the type of performance feedback returned (Nikooyan & Ahmed, 2015; Taylor

et al., 2013), and the effects of progressive training sequences from simpler to more com-

plex visual forms, as advocated in classic instruction manuals (Ruskin, 1881).

Humans draw for many reasons, including to depict, to record, to plan, to explain, and

to create (Tversky, 2011). Just as investigations of both verbal comprehension and pro-

duction are indispensable to theories about linguistic communication, a more complete

understanding of visual communication will require examining how visual recognition

and production interact to support diverse behavioral goals. Ultimately, inquiries into the

psychological basis of visual production may shed new light upon the origins of symbolic

writing systems for communication and the nature of our ability to apprehend abstract

meanings from visual artifacts.

Code availability

The code for the analyses presented in this article is publicly available in a Github

repository: https://github.com/judithfan/common_reps_production_recognition
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Data availability

The data presented in this article are publicly available in a figshare repository:
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Note

1. Two generations of the hierarchical convolutional neural network model were

employed here. The first-generation model (Yamins et al., 2014) was used for the

initial experiments, including to extract features from drawings and photographs for

the representational distance analyses (Fig. 1) and to provide object-label feedback

to participants in the visual production experiment (Fig. 2). The second-generation

model (Hong et al., 2016), which became available partway through the study, was

used for all subsequent feature analyses, owing to its superior performance, result-

ing from adding error backpropagation to the training of filter weights.
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