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A hallmark of human intelligence is the ability to
understand and influence other minds. Humans
engage in inferential social learning (ISL) by using
commonsense psychology to learn from others and
help others learn. Recent advances in artificial
intelligence (AI) are raising new questions about
the feasibility of human–machine interactions that
support such powerful modes of social learning.
Here, we envision what it means to develop
socially intelligent machines that can learn, teach,
and communicate in ways that are characteristic of
ISL. Rather than machines that simply predict
human behaviours or recapitulate superficial aspects
of human sociality (e.g. smiling, imitating), we
should aim to build machines that can learn from
human inputs and generate outputs for humans by
proactively considering human values, intentions and
beliefs. While such machines can inspire next-
generation AI systems that learn more effectively from
humans (as learners) and even help humans acquire
new knowledge (as teachers), achieving these goals
will also require scientific studies of its counterpart:
how humans reason about machine minds and
behaviours. We close by discussing the need for closer
collaborations between the AI/ML and cognitive
science communities to advance a science of both
natural and artificial intelligence.
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1. Introduction 2

Throughout history, humans have leveraged their intelligence to accumulate shared knowledge,
invent new technologies, and transform their environment to survive and flourish [1,2]. Now,
driven by remarkable progress in machine learning and artificial intelligence (AI), an ever-
increasing number of AI systems are influencing the way things are done, from everyday tasks
(e.g. predictive search, photo tagging) to highly specialized ones (e.g. antibody discovery, nuclear
fusion) [3]. For better or worse, human civilization has long benefited from finding new ways of
using other species as resources and helpers. Similarly, it is now conceivable that future human
endeavours will be increasingly intertwined with AI systems that assist and collaborate with
humans in ever richer (and perhaps riskier) ways. Yet the challenge we face today is qualitatively
different from taming existing species; we are developing new species—artificially engineered
machines—that exhibit intelligent behaviours.

Today’s AI systems often use neural networks inspired by biological brains, and even exhibit
behavioural and neural signatures of perceptual and linguistic processing that resemble those of
humans [4–8]. These systems, however, are far from duplicates of human intelligence; they learn,
represent, and reason in ways that are qualitatively different from humans. Machines that
generate text outputs with human-level fluency (e.g. ChatGPT [9]) still make mistakes that
humans would not [10–12], and those that show superhuman performance in solving hard
problems [13,14]) might generate solutions that are incomprehensible to humans. In order for
these different species to assist and collaborate with humans effectively, it is crucial for them to
understand and interpret human inputs in reasonable ways, and generate outputs that can be
understood and used by humans.

The field of AI interpretability has responded to these challenges by developing various
ways to make machines more ‘understandable’ to humans [15–19], such as exposing which
features of the input were responsible for a machine’s decision. For instance, an image
classification decision might be ‘explained’ by highlighting the pixels that contributed most to a
vision algorithm’s prediction [20]. Despite some progress, limitations of such approaches have also
become evident (e.g. [21–28]). One issue is that these tools treat the challenge of creating a
communication channel from machines to humans as a pure engineering problem, aiming to
achieve technical success (e.g. implementing a simple, one-way transmission mechanism that
converts what a machine ‘sees’ into what a human sees) without facing the fundamental scientific
challenge: bridging the representational gap between humans and machines to achieve mutual
understanding [29].

Addressing this scientific challenge will require more than just technical innovation; we also
need a framework that grounds our vision for what it means to build socially intelligent machines.
Here, we propose such a framework by drawing insights from how humans achieve mutual
understanding through inferential social learning (ISL, [30]). Although this idea was originally
proposed as an account of how humans learn from others and help others learn, it can also
serve as a useful guide for generating new research directions beyond interpretability to make
human–machine interactions more informative, productive, and beneficial for humans.

Calls for AI research to take inspiration from human cognitive development are not new. For
instance, the idea that human children can learn-to-learn based on abstract, causal theories about
the world has been widely discussed in the context of building more human-like intelligent
machines [31]. Yet, the profoundly social nature of human learning and the importance of teaching
in facilitating such learning has been relatively underappreciated in the machine learning/AI
community. Instead, the word ‘social’ has often been associated with a specific subset of
research endeavours such as building ‘social robots’ that aim to emulate the human ability to
express emotions, empathize, and connect [32,33], or ‘social AI’ specialized for tasks that require
coordination, cooperation or negotiation (e.g. DeepNash [34], CICERO [35]). Moreover, there
are a range of efforts in machine learning/AI to implement specific aspects of social learning
and teaching, such as imitation learning [36,37], machine teaching [38], reinforcement learning
from human feedback [39], and cooperative inverse reinforcement learning [40]. Thus there is a
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growing need for a theoretical framework that identifies the core characteristics of human-like
social intelligence and contexualizes these various research efforts.

To this end, our proposal highlights the importance of social cognition: the ability to think about
the minds of other agents. Often referred to as Theory of Mind, or commonsense psychology more
broadly,1 this ability supports both the production and interpretation of human social behaviours
(e.g. gaze, point, verbal communication) and strategies (e.g. cooperate, compete, negotiate).
Engaging in inferential social learning means using commonsense psychology to learn from
others about the world (social learning) and share one’s own knowledge with others (teaching). As
such, studying inferential social learning in humans not only offers a window into how
humans achieve mutual understanding, but also an opportunity to gain insights for achieving
human–machine understanding.

3

(a) Fromhuman–humanunderstandingtohuman–machineunderstanding
In the past decade, productive collaborations between developmental psychology and
computational cognitive science have made significant advances in understanding the human
mind. Examples include characterizing human learning and exploration as a process of theory-
building [42–45], formalizing social cognition as inverse planning based on causal models of
other agents [41,46,47], and building computational models of teaching as cooperative
communication that critically relies on social cognition [48–50]. These formal accounts have been
used to generate predictions for behavioural experiments with humans, especially young children
[51–54]. The inferential social learning (ISL) framework—the idea that humans learn by drawing
inferences from data provided by others—offers a comprehensive account of social learning,
teaching and communication that synthesizes these advances [30]. Rather than focusing on a
learner who explores the world or imitates another agent, or a teacher who demonstrates or
instructs, it aims to characterize the interactions between two agents—one who wants to learn (i.e.
learner) and the other who wants to teach (i.e. teacher)—as the result of mutual mental-state reasoning and
planning.

While social learning has long been associated with copying, imitation, emulation, or cue-
following, ISL offers a different perspective that focuses on representations of other minds and
inferential processes that are powerful yet flexible and context-sensitive. Although young
children tend to imitate what others do [55,56] and trust what others say [57], they are far from
indiscriminate copycats or sponges; whether they imitate, trust, or follow advice depends on the
social context, meaning that these behaviours are modulated by who is doing what and why [58–
60]. ISL explains such selective, ‘smart’ social learning as the result of sophisticated inferences,
rather than learned rules or heuristics for whom to copy and trust. It also integrates theoretical
accounts of social learning and teaching into a single framework, highlighting the importance of
social cognition (i.e. theory of mind, commonsense psychology) as a key prerequisite for both
powerful social learning and effective teaching.

While ISL was developed as an account of human-to-human learning and teaching, we believe
that situating humans and AI agents within this framework can provide a richer characterization of
human–machine understanding and generate new research directions. As human interaction is
premised on a shared understanding of each others’ mental states, we believe that human–
machine interactions should also be grounded on a shared understanding of each other. Note that
we are not necessarily envisioning AI agents that fully replicate human-like social learning. After
all, communication between humans is far from perfect [61], and in many contexts, it may not be
the best model for human–machine intelligibility. Yet, human social learning and teaching is by far
the best known example of high-bandwidth interaction between complex systems, making it an
obvious starting point for imagining machines that can interact with humans as effective helpers
and collaborators. Thus it is critical to identify the deeper principles that give rise to human-like

1Here, we use the term commonsense psychology to refer to the ability to reason about others’ actions in terms of their
underlying mental states (i.e. theory of mind) as well as their expected costs and rewards (i.e. Naive Utility Calculus, [41]).
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4

what
humans
know

what
machines

know

(a) (b) (c)

machines as learners machines as teachers humans as learners and teachers

Figure 1. Inferential social learning (ISL) between humans and socially intelligent machines. Top: just as humans learn from
others and help others learn by using a mental model of each others’ minds (i.e. a generative model of how an agent thinks,
plansandacts),humansandmachinescanengageinmorepowerfulandflexiblesociallearningandteachingbyusingamental
modelofeachother.(a)Sociallyintelligentmachineswouldbeabletolearnbydrawingrichinferencesabouthumanintentions
fromobservationsoftheirbehaviour(§3(a)).(b)Sociallyintelligentmachineswouldbeabletocommunicatewhattheyknow
to help humans learn (§3(b)). (c) Developing socially intelligent machines will also require understanding how humans think
aboutmachinemindsastheylearnfrom,evaluate,andteachmachines(§4).

social interaction, while cautioning against approaches that merely mimic the superficial aspects
of human social intelligence.

In the next section, we draw out the key aspects of ISL in humans as learners and as teachers
(§2). We then apply this idea to machines and humans (figure 1) to discuss how these ideas might
apply to machines as learners (§3(a), figure 1a) and as teachers (§3(b), figure 1b) that can even
open up opportunities for humans to learn and benefit from new knowledge they might discover.
We then argue for the need for research on how humans represent and reason about AI to achieve
successful human–machine ISL (§4, figure 1c) and close by arguing that further progress is likely to
require close coordination and collaborations between different disciplines (§5).
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2. Inferentialsociallearninginhumans 5

Inferential social learning (ISL) involves two agents who have distinct but intertwined goals: a
teacher and a learner. Here, we use the terms ‘learners’ and ‘teachers’ more broadly than how
they are conventionally used in everyday language or in classroom contexts. Any agent who
generates observable data (e.g. by speaking, generating text or labels, performing an action to
produce an effect) is a ‘teacher’ insofar as a learner can learn from the data. For instance, someone
who presses a button to activate a toy is, in principle, a teacher if a learner observed this action
and learned that pressing a button makes the toy go.

The key idea behind ISL is that learning can be especially powerful when both the teacher
and the learner behave cooperatively (i.e. the teacher wants to help the learner learn, and the
learner wants to learn from the teacher). Such cooperation requires commonsense psychology: a
generative model of how others’ internal states give rise to their observable actions. These internal
states include mental states (e.g. beliefs, desires, goals) as well as the expected utilities (costs
and rewards) of others’ goal-directed actions [41]. The learner draws inverse inferences about
the world states based on the observable behaviours of the teacher (e.g. demonstrations, verbal
instruction, selecting examples or labels) by using commonsense psychology to consider the
teachers’ mental states and utilities; at the same time, the teacher selects or generates the best set
of data (i.e. demonstrations, instructions, labels, examples) to help the learner learn by using
their commonsense psychology to consider the learner’s mental states and utilities. The process by
which a cooperative teacher selects the data for the learner is referred to as pedagogical sampling
[48,50,53], which can significantly reduce the amount of data (e.g. number of examples) the learner
needs to converge on the correct hypothesis.

The consequences of such mutually cooperative interaction between the learner and the
teacher have been demonstrated in humans, especially in young children, in the following ways:

(a) Humansaslearners:inferenceandevaluation
In ISL, the learner’s inferences from data provided by the teacher (e.g. demonstrations, examples of
a concept) are modulated by what the learner knows about the teacher’s mental states. This
allows the learner to draw inferences that go beyond the observed data especially when the
teacher is assumed to be knowledgeable and helpful [48,50]. Experiments with children
[51,52,62,63] have shown that even infants and children make this inferential leap when
demonstrations or examples of concepts indicate pedagogical sampling. For instance, when a
teacher who claims to know all about a complex-looking toy and demonstrates just one interesting
function of the toy (e.g. pressing a red button makes the toy light up), children not only learn that
the red button turns on the light, but also ‘go beyond the data’ to infer that it is the only function of
the toy; as a consequence, they explore the toy’s other functions less than if the teacher were
unfamiliar with the toy or interrupted partway through the demonstration. An understanding of
the teacher’s mental states is critical for this leap; if the toy had additional functions, a helpful,
knowledgeable teacher would have demonstrated them.

Importantly, not all teachers are equally knowledgeable and helpful. A learner may encounter
an ignorant or even a malicious (i.e. adversarial) teacher whose goal is to mislead or deceive.
Learners, however, can shield themselves from such teachers by evaluating the data provided by
the teacher against their own prior knowledge and update their mental model of the teacher;
if the teacher is suspected to be ignorant or adversarial, the learner could adjust their future
learning accordingly by placing less weight on data from the teacher or seek alternative sources
of information. Human children are capable of such evaluation and selective learning even when
the teacher technically provides accurate information; when a teacher demonstrates just one
function of a toy while omitting other functions of the toy, children rate the teacher as less
helpful compared to when the teacher demonstrates the toy’s one and only function [64,65].
These evaluations can be modelled as probabilistic inferences about the quality of the teacher’s
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pedagogical sampling: the degree to which the teacher selected the best set of data for the learner
given what the learner knows and wants [53].

6

(b) Humansasteachers:data-selectionandcommunication
In ISL, a cooperative teacher considers the learner’s mental states and expected utilities to select
the data most helpful for the learner. Studies have shown that even young children can act as
cooperative teachers who engage in pedagogical sampling; they go out of the way (i.e. incur extra
costs of their own) to provide information that the learner does not know and wants to learn [66],
but reasonably omit what the learner already knows or does not need [67]. For instance, when
only 3 of 20 buttons on a toy play music (and the rest of the buttons are inert), children flexibly
demonstrate either all 20 or just 3 buttons depending on what the learner already knows. When
the learner doesn’t know anything about the toy, they press all buttons (including the inert
ones) because seeing just a few working buttons may lead the learner to infer that all buttons play
music. However, if the learner already knows that only a few buttons play music (but doesn’t
know which ones do), children simply demonstrate the three working buttons [67]. Children also
prioritize demonstrating a toy that would be harder for the learner to discover on their own (i.e.
high discovery costs) over a toy that the learner can readily discover on their own [54]. Thus, even
young children can act as a helpful teacher by considering a learner’s knowledge, experiences and
expected utilities.

Why do these findings matter for building socially intelligent machines? Currently, humans
need a lot of expertise to provide input that is comprehensible to machines (e.g. prompt design).
Likewise, machines need to be designed with a lot of care to produce output that is meaningful to
humans (e.g. interpretable AI). What makes ISL useful as a case study is that the ways in which
humans learn from and teach one another do not require formal training or expertise. Even young
children can do it, both as learners and as teachers, because ISL is rooted in commonsense
psychology.

3. Inferentialsociallearninginmachines
Given the importance of inferential social learning in humans, building machines capable of ISL
would be a clearly desirable goal. Indeed, some recent work has emphasized ISL as a key
property of autonomous agents that learn not only from the environment but also from human
teachers [68]. Yet, it is also important to note that an account of human-to-human learning and
communication cannot be blindly applied to any and all interactions between humans and
machines. While communication between two human agents presupposes a shared conceptual
space and inductive biases, machines do not come readily equipped with human concepts [29].

While implementing human-like ISL in machines still remains a major challenge, it is an
exciting time to imagine a next generation of machines that are more socially intelligent than
today’s machines. Beyond simpler approaches like behavioural cloning [37], there is now a
growing appreciation of how human input can improve machine learning [39,69,70] especially by
inferring human values and goals to achieve better learning from human inputs and better
alignment with human values (e.g. [40,71–73]).

While these trends signal exciting progress in AI, recent advances have also raised important
questions. For instance, models trained with large-scale text data and human feedback (e.g.
ChatGPT [9], GPT4 [74]) can learn from human inputs and even generate different outputs
depending on the audience (e.g. ‘explain photosynthesis to a 7-year-old child’). Are these
machines capable of learning, teaching and communicating in ways that are premised on a shared
causal understanding of other minds, as humans do in ISL? When are these abilities critical, and
when are they not? In light of recent debates in AI about whether high-performing models we
build are capable of human-like reasoning or just ‘great memorization machines’ (e.g. [10–12]),
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7

Figure 2. Thisimageofabridgenearacitycouldbelabelledordescribeddifferentlydependingonthecontext.

situating machines and humans in an ISL framework may help us clarify answers to these
questions.

AI is a vast and fast-growing field. Thus our goal is not to suggest specific solutions for a
particular problem, but to situate humans and machines in the ISL framework to identify new
questions and suggest promising directions that emerge from this picture. In what follows, we
envision machines that learn from humans (i.e. machines as learners, §3(a)) and help humans
learn (i.e. machines as teachers, §3(b)).

(a) Towardssociallyintelligentmachinesthatlearnfromhumans
In §2, we provided key characteristics of an inferential social learner in humans (flexible inference
from data, sensitivity to the quality of data). In a nutshell, a learner capable of ISL capitalizes on the
fact that humans, as teachers, speak and act differently depending on their mental states and the
intended audience; that is, the teacher’s behaviours come from their mental states, modulated by
their communicative intent, and the learner benefits from considering these factors. We can draw
parallels to these characteristics by considering a machine learning model as the learner and the
source of data (i.e. humans who generated the training data) as the teacher.

(i)Understandingtheknowledgeandintentionsofhumanteachers(data-generators)
Suppose you asked others to describe the image in figure 2. While some might refer to the ‘Golden
Gate Bridge’ (i.e. the prominent structure featured in the foreground) or ‘San Francisco’ (i.e. the
city in the background), those who do not recognize the bridge or the cityscape may use other
terms to describe the salient and distinct features of this image (e.g. bridge, city). Furthermore,
even the same person could describe the image very differently depending on the constraints on
the output (e.g. a single label or free response?), the audience (e.g. a child or an adult?) and
the purpose (e.g. a description for a potential tourists?). Thus, data generated by human
‘teachers’—whether it be labels, demonstrations, or large amounts of text—reflect their goals,
knowledge, intentions, and what they know about the potential recipient. If a machine learner can
consider the human teacher’s mental states and the generative process that gave rise to the choice of
labels or descriptions, the machine learner can potentially ‘go beyond the data’ to increase
sampling efficiency, or even protect itself from potentially harmful sources of information by
evaluating the quality of data.
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From this perspective, developing ISL-inspired machines will require richer datasets that
reflect a broader range of human intentions and knowledge. While some of the most influential
datasets in computer vision have often included human-generated labels, annotations, or even
questions [75–77], humans in these datasets were given minimal prompts with little context about
how the labels would be used. Thus, these datasets contain human-generated outputs that have
high convergence across individuals (strength) but lack the variance in communicative intent
that are typical of human interactions (weakness). A promising way forward may be to build
datasets that expose the importance of communicative intentions and social context. Human
demonstrations are already a valuable source of data for training machines to perform long-
range planning tasks in complex physical environments (e.g. household tasks such as cleaning a
bedroom [78]). While these demonstrations may not necessarily be communicative in nature, they
can still vary depending on the expertise and knowledge of the demonstrator (professional cleaner
or a novice?) or the intended observer (humans or robots?). More generally, datasets displaying
greater variation in human intentions can facilitate the development of more powerful machines
that leverage human goals and preferences to learn more effectively from humans and even
coordinate their own actions with humans [72,79].

8

(ii)Beyondrichdatasets:ISLinfoundationmodels
A very different example of a rich dataset is the internet itself. Large language models (LLMs), or
foundation models more generally [80], are pre-trained deep neural network models that are
increasingly integrated with other model components for various tasks, ranging from
answering simple questions to writing codes or composing an essay (e.g. GPT3 [81], GPT4 [74]
and PALM [82]). These models are trained on internet-scale text data generated by humans,
originally intended to be consumed by other humans, often with a clear communicative
intent or even with a specific audience in mind. While these models are trained to learn
patterns in text without any explicit consideration of such communicative intent in the training
process, recent work suggests that using chain-of-thought prompts that reflect the latent human
communicative intent can improve their performance [83,84]. Furthermore, recent work also
raises the possibility that language models, in principle, could learn representations that can
correspond to human mental states, such as beliefs, desires, and goals [85]. Recent debates about
whether LLMs have genuine, human-like linguistic competence [10,11] or Theory of Mind [12,86]
are also relevant to the possibility of large models acquiring a model of the human mind.

Particularly notable examples involve reinforcement learning from human feedback (RLHF)
where models are further fine-tuned using explicit human feedback, as in the case of InstructGPT
and ChatGPT [9,70]. Here, one can imagine the human rater’s role as both a learner and a teacher;
the human rater is a learner who evaluates the quality and helpfulness of the model’s output, but
to the extent that their feedback is used for training, the human is also a teacher. Current
approaches use human ratings (e.g. rank-order of prompts) as part of the objective function,
reflecting a broader trend in the cognitive neuroscience literature that treats social feedback as a
simple reward-predictive cue [87]. However, when humans provide evaluative feedback to
other humans, they often do so with a communicative intent (e.g. help a student improve), with
different expectations and standards depending on who is being evaluated on what kind of task.
This means that even the same response to a prompt may be evaluated differently depending on
the context. By placing machines and humans in ISL framework, we can envision learning from
human feedback that capitalizes on a broad range of human raters’ mental states and values. For
instance, a machine learner capable of ISL could learn more from less data based on a few ‘best’
and ‘worst’ examples chosen by a human rater (teacher), and prioritize learning from certain
raters depending on their reliability and evaluative standards.

As noted above, a socially intelligent machine that is capable of considering the intentions of
the data source (teacher) should also be capable of learning to detect (and avoid further learning
from) a malicious source of data. In an online learning setting where a production model might be
fine-tuned as it receives new data (e.g. sudden surge of a keyword in search), it is crucial
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to decide whether to adopt to a distributional change (e.g. breaking news) or ignore as outliers
(e.g. adversarial attacks). Incidents where new AI (e.g. Tay chatbot, [88]) is released in the wild
and taken down immediately due to problems that arose from learning from online data are
examples of failures to consider the human intentions that gave rise to the observed data. More
generally, being able to consider the role of humans and the quality of their inputs in the training
process would be particularly critical as various foundation models—trained by large-scale data
from difference sources with varying degree of quality and fidelity over the course of a long
time—become more influential in our society.

Looking further ahead, developing machines that are capable of understanding the latent
variables (e.g. mental states) that give rise to human behaviours is deeply relevant to the
alignment problem, which refers to the challenge of steering AI systems towards human goals
and interests [89]. For instance, if a robot starts cleaning the house while a human is trying to
take a nap, a socially intelligent robot would not take the human’s negative feedback (e.g. ‘don’t do
that again!’) as a blanket ban on vacuuming; it would understand that the human wants to nap,
that the vacuum noise is preventing him from getting it, and it should stop and resume the task
when the human is awake or away.2 In fact, even understanding what ‘that’ in the human
command refers to is a non-trivial problem. While this is a toy example, the general ability to
understand the why’s in human users’ inputs and responding appropriately will not only require
advances in AL/ML but also in cognitive science, as we still do not fully understand how humans
are capable of understanding such commands.

9

(b) Towardssociallyintelligentmachinesthathelphumanslearn
The prevailing current approach in AI is to think about machines as learners that must be trained
with large human-generated datasets to be useful. However, as machines become more powerful
learners, they can also play increasingly important roles as teachers that help humans learn. Here,
we consider two ways in which machines can serve as teachers in a broad sense. First, machines
could better translate its predictions, decisions and discoveries in ways that are understandable to
humans; second, machines could teach human learners in educational settings.

(i)Machinesthatcanexpandhumanknowledge
Today’s AI systems can already perform tasks better than human experts in some domains
[13,14]. However, the rationale behind the predictions made by the most performant of these
systems remains mostly incomprehensible to humans, motivating the need to develop strategies to
probe how these systems arrive at their decisions, and how to translate them in a way that is
understandable to humans [29,91]. Progress in developing more interpretable AI systems may not
only promote safer use of these systems, but also open up the possibility for them to genuinely
expand human knowledge.

For example, consider AlphaGo, an AI system trained to play the strategy board game Go,
a game noted for its substantial complexity. In a high-profile match-up between AlphaGo [13]
and human world champion Lee Sedol in 2016, AlphaGo generated a surprising move (‘move
37’ [92]), which turned out to be critical to its historic victory over Lee. This move confused
even expert human players, fuelling excitement about the possibility of expanding the suite
of effective Go strategies known to humans. However, there are many challenges in making
AlphaGo’s knowledge accessible to humans. First, while the moves AlphaGo makes are directly
observable, the internal processes giving rise to these moves are not. Second, given the many
differences between AlphaGo and humans, it is likely that the latent representations that AlphaGo
has acquired to play Go are different from the latent representations that human players use when
playing the same game.

Current approaches to bridging these observability and representational gaps include building
‘inherently interpretable’ structure into a model during training [93] or by introducing such

2This example was mentioned in The Book of Why: The New Science of Cause and Effect by Pearl & Mackenzie [90].
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structure after training (i.e. post hoc methods [15,–17,94]). Some common ways of introducing
‘structure‘ into inherently interpretable models are to define rules [95], provide prototypical
examples [19,96], inducing causal structure [97] and more recently, employ human-interpretable
concepts [17,98,101] rather than ‘raw’ model feature representations [15,16,94]. The intuition
behind using concepts is to bring model representations into closer alignment with the vocabulary
that humans use. For instance, a machine could use part concepts like ‘feather’ and ‘wings’ to
describe why it recognized a ‘bird’ in an image rather than referring to individual pixels in the
image. This approach has gained traction especially in highly specialized domains (e.g. medicine
[102–105]), as it allows a mapping between the components of an AI system’s decision processes
and the concept labels that humans understand (e.g. translating a model’s predictions in ways
that make sense to medical professionals in clinical settings, see [102]).

These approaches, however, use human-provided concept labels for each specific domain,
rather than taking a general approach to inferring human-like concept-based representations that
can be applied in any arbitrary domain. As such, they rely on assumptions about human concepts
that may not always be justified. For example, similarity measures in inherently interpretable
models may differ substantially from how humans reason about similarity [106,107]). To the
extent that the latent representations used by models to reason about these concepts differ
from those actually used by humans, relying on model-based similarities alone may introduce
various distortions and biases that limit human interpretability. More generally, a key issue in
interpretability lies in understanding why humans describe their observations and reasoning
processes using certain concepts and not others, or what information humans might find most
useful and relevant to their goals.

Beyond bringing machines closer to humans by increasing interpretability, another avenue
forward may be to embrace the possibility that humans will need to acquire fundamentally new
concepts in order to understand what highly capable AI systems have learned. After all, examples of
radical forms of conceptual change abound in how children learn [108,109]. For instance,
children take years to acquire numerical concepts like ‘one,’ ‘two’ and ‘three’ [110]; before a
child acquires an adult-like concept of numbers, how the child understands information about
quantity may be opaque to an adult, and vice versa. Expanding what humans know by learning
from machines may entail a similar sort of radical conceptual change. An intriguing possibility is
that such changes might be driven by the same mechanisms that underlie conceptual change and
cognitive development in humans.

10

(ii)Machinesthatsupportformaleducation
A major challenge confronting any teacher in a classroom is selecting the right kind of information
to facilitate student learning; this is a real-world version of the problem that computational
models of pedagogical reasoning try to address [48]. Crucially, as we have seen in the above
descriptions of ISL, the value of information for a given student depends not only on the
predetermined content of a particular lesson but also on the students’ knowledge, skills, and goals
(i.e. the student’s mental states and utilities). Understanding these internal qualities of a student
requires non-trivial forms of inference that often must be made from a limited amount of data (e.g.
a few submissions by the student on a coding assignment). Moreover, even when a teacher draws
accurate inferences about an individual student’s knowledge state, it is prohibitively costly in
time and resources for a single teacher to design personalized lesson plans for all of their students.

As such, we see major opportunities to develop AI systems that support teachers by both
helping them keep track of student learning, as well as design and administer learning activities
that are tailored to individual student needs. For instance, while some students may benefit more
from concrete examples that illustrate a certain concept, other students may benefit from by being
provided with the abstract principle [111]. In these scenarios, building AI systems that are able
to leverage student output (e.g. responses to open-ended questions) to accurately model how
a specific student’s beliefs would change given an example or principle is more likely to offer
more useful pedagogical recommendations [112]. In addition, because what a student knows
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is expected to change across days, weeks, and months, it is important to develop approaches
that integrate student behaviour over these multiple timescales when determining what kind of
feedback or learning activity is likely to be helpful to a student. As such, developing AI systems
that help human teachers keep track of individual student learning trajectories may be especially
impactful for educators.

There are already efforts underway to develop AI systems that meet some of these challenges.
For example, there is a growing body of work leveraging massive datasets from many students to
infer which concepts an individual student might be struggling with [113–116]. In addition, there
are continually improving systems that aim to make good recommendations about the sequence
of lessons that are appropriate for individual students [38,117], as well as ones that aim to provide
real-time feedback to students as they engage with new material [118,119]. However, in more
naturalistic pedagogical settings where social feedback produced by current machines has been
compared directly with that provided by human teachers, it appears that current machine
teachers still underperform on several key measures of pedagogical success [120]. Nevertheless,
we are optimistic about the prospects for applications of AI in formal education, especially AI
systems that embrace the importance of building genuine mental models of human learners.

11

4. Humans as learners and teachers: studying how humans think
aboutmachines

Social learning and teaching in humans involve much more than a teacher feeding data to a
learner; it is built upon a mutual understanding between a teacher and a learner. Therefore,
efforts to develop machines that learn from, teach, and communicate with humans cannot succeed
without understanding how humans think about machine minds. Research that investigates the
mental models that humans use to understand machine behaviour is barely in its infancy, but
there are already signs of exciting progress.

(a) IntuitivetheoryofAI:howhumansbuildmentalmodelsofmachineminds
The human mind is not inherently equipped to represent or reason about AI. While humans
have distinct cognitive and neural mechanisms for perceiving and representing ‘living things’
and their minds [121–124] versus inanimate objects and physical events [125–127], when objects
move like animate beings, humans (even infants) tend to attribute agency and mental capacities to
these entities [128–130]. From this perspective, AI presumably occupies an intermediate position
between objects and agents; some AI systems resemble human appearance and are capable of
self-locomotion (e.g. humanoid robots) while others clearly look like objects (e.g. smart speakers)
but are still capable of processing language. How do humans make sense of these entities?

Recent research suggests that the kinds of mental capacities humans (especially young
children) attribute to AI depends not only on their human-likeness in appearance, but more
importantly on how they behave and respond to human input [131–133], reflecting that AI
indeed occupies this in-between space. One possibility is that humans construct an intuitive theory of
AI, a system of beliefs about what it is and how it behaves, just as how humans’ beliefs about
objects and agents have been characterized as intuitive theories [134,135]. Rather than being
built from scratch, however, its initial components may come from their knowledge about objects
and agents, and become gradually revised and refined based on their experience with AI systems.
Thus, contemporary theories of how humans build such theories [43,44,134] as well as
computational approaches to studying social cognition [41,46,87]) could be applied fruitfully to
the question of how humans construct an intuitive theory of machine minds.

More generally, investigating how humans represent a diverse array of machines and machine
minds across ages, cultures and degree of experience with AI is an exciting avenue for research,
and would provide important grounds for thinking about human–machine communication.
Collaborations between cognitive science and ML/AI can also inform specific questions about
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the degree to which humans regard machines as a socially intelligent agent as opposed to simply a
useful device (i.e. an object). What are the kinds of errors that are diagnostic of machine outputs, and
how are they different from the ones only humans would make? How rich of a mental model
do people spontaneously ascribe to systems that make errors that seem qualitatively different
from their own? Answering such questions rigorously is challenging due to their
multidisciplinary nature, but crucial for both fields; these efforts can help develop safer and more
trustworthy AI, while also having profound implications for how humans interact with machines
and evaluate its errors. We further expand on this point below.

12

(b) Moralevaluationofmachines
The question of how humans think about machine minds is particularly urgent in high-stakes
settings where humans and machines must quickly coordinate their behaviours. For example,
autonomous vehicles must be able to accurately infer the goals and plans of other agents
operating other vehicles on the road in order to safely navigate such environments [71,79].
However, when accidents involving autonomous vehicles invariably occur [136,137], these
situations are precisely where humans’ intuitive theory of AI will have real-world relevance: to
the extent that humans expect machines as an agent with a goal to safely operate a passenger
vehicle (rather than a device that simply follows rules), it may also be expected to bear moral
responsibility for the split-second decisions it makes [138–140].

Although both human and machine minds are vulnerable to making errors, current AI
systems make systematically different errors than humans do in several domains that pertain to
safe driving, including visual object categorization [6,141] and physical scene understanding
[142]. Nevertheless, these behavioural differences do not necessarily imply that machine latent
representations are entirely opaque to human observers. Recent work in cognitive science has
found that humans are capable of quickly building reasonable context-specific expectations about
how these machines will behave in visual recognition [4,143] and physical prediction tasks [144].
These demonstrations suggest that ordinary people build and use mental models of machines,
even when (or especially when) these machines make surprising errors. Given that people tend to
blame human drivers more than their automated cars when either of them make a mistake [139],
studying how people conceptualize various forms of AI agents and the impact of different
conceptualizations on moral judgement continue to be an important line of inquiry.

On another note, even though we anticipate meaningful progress towards human–machine
mutual understanding in the coming years, it will be important to continue to manage the
expectations that people have about these systems. After all, machines are not humans, and even
once they approach human-level abilities in many domains, even in their social inference and
communicative abilities, there will still likely be contexts where there remain important gaps
between humans and any given AI system. It may thus be critical for socially intelligent AI
systems to be sensitive to human users’ expectations and convey their uncertainty in a manner
that humans will appreciate.

5. Lookingahead,workingtogether:AIandcognitivescience
So far, we have argued that we need socially intelligent machines that can understand and be
understood by humans. We envision that these next-generation machines learn in smarter ways by
considering the role of humans (both in training with massive datasets and learning from small
amounts of human input), and help humans learn not only by serving as effective teachers but also
by making their decisions more understandable by human users. This fundamentally
cooperative nature of ISL may also help minimize the potential risks of machines with powerful
social intelligence. To achieve this, we need to go beyond the engineering-centric approach,
towards a science-centric approach [145–147], and study machines as targets of scientific study.
These advances will not be possible without both fields working together. While machine
learning/AI research needs insights from cognitive science to build machines that can think about
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humans, these efforts must be complemented by scientific studies of how humans think about
machines.

An interesting open challenge that goes beyond the scope of this paper is measuring our
progress towards more socially intelligent AI. A reasonable starting point could be to leverage
techniques already used in cognitive science and psychology to study human intelligence. For
instance, we may need to develop new tools—e.g. tests of AI behaviour with high measurement
reliability and construct validity—to thoroughly probe how these systems work. In particular,
experimental methods developed for studying the human mind [148] may prove to be useful for
studying the ‘minds’ of machines. Just as such tools are used in cognitive science and psychology to
study how the human mind works, we anticipate the ‘cognitive science of AI’ emerging as an
important research area that aims to understand the degree to which an AI system has acquired an
understanding of various core concepts [142,145].

Taking such an approach has been particularly useful for advancing our understanding of
intelligence in children versus adults (e.g. cognitive development) as well as humans versus
other species (e.g. comparative cognition), where the mechanistic causes of behavioural changes
(or differences) are not directly observable. Taking a similar approach to make well-controlled
comparisons between different kinds of AI systems might offer generalizable insights about the
mechanistic causes of their behaviours. Some recent benchmarks inspired by infant social cognition
[149,150] represent the first steps in this direction, attempting to measure machines’ ability to
predict an agent’s behaviour with respect to its goals, preferences, and action efficiency in minimal
settings. As the field moves towards machines that are actually able to interact with humans (i.e.
embodied robots), it will become increasingly critical to have benchmarks that test complex
machine behaviours in more realistic settings [78,151]. Ultimately, coordinating efforts across all of
these fields will be critical for developing a unified set of toolkits for studying both natural (i.e.
human) and artificial intelligence.

Going beyond characterizations of intelligence that focuses on an isolated agent, we anticipate
that social intelligence will take a central place in these endeavours. Our contemporary
understanding of the human mind has been largely shaped by the ‘cognitive revolution’ in the
1950s. This was a response to the behaviourist ideas that treated the mind as a black box and
focused only on what goes in (input/data) and what comes out (output/behaviour),
characterizing learning as conditioned responses or strengthening of associations. However,
despite substantial advances that have thrown more light into this black box, it has taken decades
for theories of human learning to embrace the centrality of social cognition in how humans learn
and think. Our hope is that AI research can avoid retracing the long detour by treating social
intelligence as an integral part of what it means to develop smarter machines.
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