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Visual resemblance and interaction history
jointly constrain pictorial meaning

Robert D. Hawkins 1,2 , Megumi Sano1, Noah D. Goodman1,3 &
Judith E. Fan 1,4

How do drawings—ranging fromdetailed illustrations to schematic diagrams—
reliably convey meaning? Do viewers understand drawings based on how
strongly they resemble an entity (i.e., as images) or based on sociallymediated
conventions (i.e., as symbols)? Here we evaluate a cognitive account of pic-
torial meaning in which visual and social information jointly support visual
communication. Pairs of participants used drawings to repeatedly commu-
nicate the identity of a target object among multiple distractor objects. We
manipulated social cues across three experiments and a full replication, find-
ing that participants developed object-specific and interaction-specific stra-
tegies for communicating more efficiently over time, beyond what task
practice or a resemblance-based account alone could explain. Leveraging
model-based image analyses and crowdsourced annotations, we further
determined that drawings did not drift toward “arbitrariness,” as predicted by
a pure convention-based account, but preserved visually diagnostic features.
Taken together, these findings advance psychological theories of how suc-
cessful graphical conventions emerge.

Human communication goes well beyond the exchange of words.
Throughout human history, people have devised a variety of tech-
nologies to externalize and share their ideas in more durable visual
formats. Perhaps the most basic and versatile of these technologies
is drawing, which predates the invention of writing1–3 and is perva-
sive across many cultures4. The expressiveness of drawings has long
provided inspiration for scientists investigating the mental repre-
sentation of concepts in children5,6 and clinical populations7,8. Yet
current theories of depiction fall short of explaining how humans
are capable of leveraging drawings in such varied ways. In parti-
cular, it is not clear how drawing enables the flexible expression of
meanings across different levels of visual abstraction, ranging from
realistic depictions to schematic diagrams. Do viewers understand
drawings based solely on their ability to resemble the entities they
refer to (i.e., as images), or do they understand drawings based on
shared but arbitrary associations with these entities (i.e., as
symbols)?

On the one hand, there is strong evidence in favor of the image-
based account, insofar as general-purpose visual processing mechan-
isms are sufficient to explain how people are able to understand what
drawings mean. Recent work has shown that features learned by deep
convolutional neural network models (DCNNs) trained only to recog-
nize objects inphotos, but havenever seen a linedrawing, nevertheless
succeed in recognizing simple drawings9. These results provide sup-
port for the notion that perceiving the correspondence between
drawings and real-world objects can arise from the same general-
purpose neural architecture evolved to handle natural visual
inputs10–12, rather than relying on any specialmechanisms dedicated to
handling drawn images. Further, visually evoked representations of an
object in human visual cortexmeasured with fMRI can be leveraged to
decode the identity of that object during drawing production, sug-
gesting that functionally similar neural representations are recruited
during both object perception and drawing production13. Together,
these findings are convergent with evidence from comparative,
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developmental, and cross-cultural studies of drawing perception. For
example, higher non-human primates14, human infants15, and human
adults living in remote regions without pictorial art traditions and
without substantial contact with Western visual media16 are all able to
recognize line drawings of familiar objects, even without substantial
prior experience with drawings.

On the other hand, other work has supported a symbol-based
account, by pointing out the critical role that conventions play in
determining howdrawings denote objects17,18. What characterizes such
conventional accounts is that they rely on associative learning
mechanisms that operate over socially mediated experiences, beyond
pre-existing perceptual competence. This view is supported by
developmental19 and computational modeling20 work that has high-
lighted the importanceof social context for explaining howpeople can
robustly identify the referent of even very sparse drawings. Moreover,
several pioneering experimental studies have identified a key role for
real-time social feedback during visual communication in driving the
increased simplification of drawings over time21,22, broadly consistent
with the possibility that similar pressures shaped the emergence of
modern symbol systems23–25. Further support for the notion that the
link between pictures and their referents depends crucially on socially

mediated learning comes from the substantial variation in pictorial art
traditions across cultures4 and the existence of culturally specific
strategies for encoding meaning in pictorial form26–28.

In this paper,we evaluate a cognitive account of pictorialmeaning
that aims to reconcile these resemblance-based and convention-based
perspectives. According to our account, people integrate information
from current visual experience with previously learned associations to
determine the meaning of a drawing. Our account aims to
ground foundational ideas from semiotic theory in specific cognitive
processes that are integrated in a model of the viewer. Most notably,
while C.S. Peirce’s taxonomy of signs29 is often glossed as making
categorical distinctions between icons, indexes, and symbols, it is also
compatiblewith amorecontinuous conceptualizationofhowdifferent
signs relate to one another30–32, where the meaning of a sign gen-
erally depends on interactions between "Firstness" (i.e., natural
resemblance) and "Thirdness" (i.e., conventionalized relations). Similar
arguments have also been advanced more recently in the philosophy

literature on depiction, which continues to debate the merits of and
objections to resemblance-based and convention-based views 33,34,35.

Our account makes two key predictions: First, while visual
resemblance tends to dominate in the absence of learned associa-
tions, novel associations can emerge quickly and come to strongly
determine pictorial meaning. For example, as two communicators
learn to more strongly associate a particular drawing with an object
it is intended to depict, even sparser versions of that drawing that
share key visual features should still successfully evoke the original
object, even if it directly resembles that object to a lesser extent.
Second, visual resemblance will constrain the kinds of novel asso-
ciations that form, such that visual information that is inherently
more diagnostic of the referent will be more likely to form the basis
for ad hoc graphical conventions. For example, if a target object is
distinguished by a particular visual attribute (e.g., a particularly
long beak for a bird), then it is more likely that the sparser drawing
will preserve this attribute, even at the expense of other salient
attributes of the target object.

To test these predictions, we developed a drawing-based refer-
ence game where two participants repeatedly produced drawings to
communicate the identity of objects in context (see Fig. 1). Our
experimental approach builds on pioneering work investigating the
emergence of graphical symbol systems and the importance of social
feedback for establishing conventional meaning21,22,36–42, which belong
to a broader literature studying ad hoc convention formation in spo-
ken language43,44, written language45 and gesture46–48. However, our
experiments differ in three important ways from that work. First, our
work is motivated by different theoretical questions. In particular, our
primary goal is to understand the cognitive constraints that enable
individual sketchers and viewers to determine the correspondence
between pictures and their visual referents in context, rather than the
question of where symbols come from or how symbols evolve as a
consequence of cultural transmission. Towards this end, we employed
a task paradigm in which people used pictures to communicate about
visual objects, unlikemuchprior work that has employed text ormusic
as the target of communication21,37.

Second, our work makes several methodological contributions
that advance our understanding of pictorial meaning. While related
ideas concerning the role of iconicity and convention have been
explored in earlier work in experimental semiotics21,39,42, methodolo-
gical limitations in this work temper the conclusions that can be drawn
from existing evidence. Our approach addresses these limitations in
three key ways. In order to distinguish between task-general and item-
specific changes in how people depict objects over time, we use a pre-
post design and include a control set of objects. In addition, in order to
measure how strongly resemblance drives recognition in the absence
of shared interaction history, we recruit naive participants to guess the
intended referent of each drawing. Moreover, we leverage recently
developed model-based techniques9,49 and crowdsourcing to system-
atically analyze the perceptual similarity between drawings, as well as
between drawings and their referents. Both of these techniques pro-
vide well validated ways of measuring key aspects of visual resem-
blance that go beyond the low-level measures of visual complexity
used in prior work.

Third, the insights gained from our approach support a view of
pictorial meaning that is distinct from that advanced by prior work
using similar iterated communication paradigms. Earlier studies sug-
gested that graphical communication may initially rely on iconic rela-
tionships between a picture and its referent, but then “drift towards
the arbitrary”40. By contrast, the evidence we present suggests instead
that resemblance continues to exert an influence on how drawings
evolve throughout an interaction, with visual elements that are most
useful for distinguishing a referent fromother objects in context being
more likely to be preserved.

Fig. 1 | Examples of sketches produced in a repeated visual communication
task. Participants in our study produced sketches depicting the same object (left)
over a series of eight blocks (right). Images of objectswere rendered from 3Dmesh
models in the ShapeNet database and appear in this figure with permission.
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Results
To investigate the potential role that both visual information and
shared associations play in determining how people communicate
about visual objects, we used a drawing-based reference game para-
digm. On each trial, both participants shared a visual context, repre-
sentedby an array of four objects thatwere sampled froma set of eight
visually similar objects (Fig. 2A). One of these objects was privately
designated as the target for the sketcher. The sketcher’s goal was to
draw the target so that the viewer could select it from the array of
distractor objects as quickly and accurately as possible. Importantly,
sketchers drew the same objects multiple times over the course of the
experiment, receiving feedback about the viewer’s response after each
trial (Fig. 2B). This repeated reference-game design thus allowed us to
track both changes in how well each dyad communicated, as well as
changes in the content of their drawings over time.

Improvement in communicative efficiency across repetitions
Given that the focus of our study was on changes in communication
behavior over time, we first sought to verify that dyads were able to
successfully communicate.We found that even the first time sketchers
drew an object, viewers correctly identified it at rates well above
chance (proportion correct: 76%, chance = 25%), suggesting that they
were engagedwith the taskbut not yet at ceiling performance. Inorder
to measure how well dyads learned to communicate throughout the
rest of their interaction, we used a measure of communicative effi-
ciency the balanced integration scoreor BIS 50; that takes both accuracy
(i.e., proportion of correct viewer responses) and response time (i.e.,
latency from beginning of trial until viewer response) into account.
This efficiency score is computed by first z-scoring accuracy and
response time for each drawing within an interaction, in order to map
different interactions onto the same scale. We then combined these
measures by subtracting the standardized response time from stan-
dardized accuracy. Efficiency is highest when dyads are both fast and
accurate, and lowest when they make more errors and take longer,
relative to their own performance on other trials.

We fit a linear mixed-effects model predicting efficiency as a
function of repetition block, including random slopes for each dyad.
We treat repetition block as a continuous predictor (integers 1

through 8); to account for non-linearities in the effect, we also
included an orthogonalized quadratic effect of repetition (see Sup-
plementary Methods for a Bayesian mixed-effects model making the
weaker assumption of monotonicity). We found that communicative
efficiency reliably improved across repetitions of each object
(b = 23.5, t(66) = 13.5, p < 0.001; Fig. 3). Similar improvements were
found when examining only raw response times (12.2s on first repe-
tition, 6.8s on final repetition: b = − 69.9, t(66) = − 11.5, p < 0.001) or
raw accuracy (76% on first repetition, 90% on final repetition:
b = 26.6, z = 5.8, p < 0.001 in logistic regression), indicating that par-
ticipants had achieved greater efficiency by becoming both faster
and more accurate. One straightforward explanation for these gains
is that sketchers were able to use fewer strokes per drawing to
achieve the same level of viewer recognition accuracy. Indeed, we
found that the number of strokes in drawings of repeated objects
decreased steadily as a function of repetition (b = −22.9, t(66) =
−6.00, p < 0.001; Fig. 4A). Overall, these results show that dyads
were able to visually communicate about these objects more effec-
tively across repetitions.

Object-specific improvements in communicative efficiency
While these performance gains are consistent with the possibility that
participants had developed ways of depicting each object that were
dependent on previous attempts to communicate about that object,
these gains may also be explained by general benefits of task practice.
To tease apart these potential explanations, we also examined changes
in communication performance for a set of control objects that were
drawn only once at the beginning (pre phase) and at the end (post
phase; Fig. 2C). In the pre phase, there was no difference in accuracy
between repeated and control objects (75.7% repeated, 76.1% control),
which was expected, as objects were randomly assigned to repeated
and control conditions. To evaluate differential changes in commu-
nicative efficiency across conditions, we fit a linear mixed-effects
model including categorical fixed effects of phase (pre vs. post), con-
dition (repeated vs. control), and their interaction, as well as random
intercepts, slopes, and interaction coefficients for each dyad. We
found that communicative efficiency reliably increased overall
between the pre and post phases (b = 0.72, t(137) = 14.6, p < 0.001),

Fig. 2 | Experimental design. A Two object collections were used, each containing
eight similar objects. Images of objects were rendered from3Dmeshmodels in the
ShapeNet database and appear in this figure with permission. B Pairs of partici-
pants performed a drawing-based reference game in which one participant
(sketcher) was cued to draw the target object such that the other participant
(viewer) could identify it in context. C Four objects were drawn repeatedly

throughout the interaction; the remaining four control objects were drawn once
each at the beginning and end of each interaction. D Recognition participants
aimed to identify the target object in context based on drawings from the refer-
ence game experiment. These drawings were either all from a single commu-
nicative interaction (yoked) or from all different interactions (shuffled).
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suggesting at least some general benefit of task practice. Critically,
however, we also found a reliable interaction between phase and
condition: communicative efficiency improved to a greater extent for
repeated objects than control objects (b = −0.16, t = − 3.17, p = 0.002;
see Fig. 3). To account for possible artifacts introduced by imbalances
in the number of repeated and control trials in the z-scoring proce-
dure, we also ran the same analysis z-scoring only within the balanced
set of 16 pre and post trials. The effect was similar (b = −0.14, t = −3.10,
p =0.002). We also note that post-test performance in the control
condition is comparable to that in the 2nd repetition block of the
repeated condition (82.8% and 83.2% accuracy, respectively), although
response times were somewhat faster on the post-test, consistent with
general task-practiceeffects. These improvements in efficiency aredue
to both changes in raw (un-transformed) accuracy (control: +7.1%,
repeated: +14.5%; interaction: b = −0.46, z = −2.8, p = 0.005 using
logistic regression) and raw response time (control:−3.8s, repeated:
−5.3s; interaction: b =0.38, t = 2.8, p = 0.006). See Supplementary
Methods A2.2 for further analyses. Together, these data provide evi-
dence for benefits of repeatedly communicating about an object that
accrue specifically to that object.

An intriguing possibility is that dyads achieved such benefits by
developing ad hoc graphical conventions establishing what was suffi-
cient and relevant to include in a drawing to support rapid identifica-
tion of objects they repeatedly communicated about. To investigate
this possibility, we examined how the drawings themselves changed
throughout each interaction, hypothesizing that successive drawings
of the same object produced within an interaction changed less over
time as dyads converged on consistent ways of communicating about
each object. For these analyses, we capitalized on recent work vali-
dating the use of image features extracted by deep convolutional
neural network (DCNN) models to measure visual similarity between
drawings9. Specifically, we used a DCNN architecture known as VGG-
1949 to extract feature vectors from pairs of successive drawings of the
same object made within the same interaction (i.e., repetition k to
k + 1), and computed the correlation between each pair of feature
vectors. A mixed-effects model with random intercepts and slopes for
both target object and sketcher revealed that the similarity between
successive drawings increased throughout each interaction (b =0.62,
t(12) = 3.84, p = 0.002; Fig. 4B), providing support for the notion that
dyads converged on increasingly consistent ways to communicate
about each object (see Supplementary Note 1 for additional control
analyses demonstrating that these effects are not driven by lower-level
features such as the amount of empty space on the drawing canvas).

Effect of shared interaction history on performance
One way of understanding our results so far is that the need to
repeatedly refer to certain objects is sufficient to explain how the way
sketchers depicted them changed over time. However, these objects
did not appear in isolation, but rather as part of a communicative
context including a consistent viewer and the other, distractor objects.
How did this communicative context influence the way drawings
conveyed meaning about the target object across repetitions? To
investigate this question, we conducted a follow-up recognition
experiment (see Fig. 2D) including two control conditions to estimate
how recognizable these drawings were to naive viewers, outside the
communicative context in which they were produced. Participants in
the shuffled control group were shown a sequence of drawings spliced
together from many different interactions, thus disrupting the con-
tinuity experienced by viewers paired with a single sketcher. Because
this offline recognition task differed in several ways from the inter-
active communication task, we also included a more directly com-
parable yoked control group who were shown a sequence of drawings
taken from a single interaction, closely matching the experience of
viewers in the communication experiment One noteable difference is
that viewers in our main communication experiment saw the drawing
unfold stroke-by-stroke in real-timewhereas viewers in the recognition
experimentwereonly shown thefinished drawing as a static image.We
address this difference in an internal replication discussed below (see
Supplementary Methods, A2.3).

Insofar as interaction-specific shared associations contributed to
the efficiency gains observed previously, we hypothesized that the
shuffled group would not improve as much over the course of the
experimental session as the yoked (or original communication) group
would. Both conditions preserved the repetition index of the original
drawing, so adrawing thatwas produced in the 5th repetition blockof a
communication game was presented in the 5th repetition block of the
shuffled and yoked conditions; this manipulation is importantly dif-
ferent from prior studies which manipulated the order in which trials
were playedback to naive comprehenders e.g., 51, who reversed the trial
order or omitted early trials altogether e.g 52,53, who dropped naive
comprehenders into later blocks. Critically, groups in both control
conditions received exactly the same amount of practice recognizing
drawings, and performed the task under the same incentives to
respondquickly andaccurately; theonlydifferencebetweenconditions
was whether the drawings had been produced by the same sketcher.
Thus any differences in performance between these groups is attribu-
table to the impact of interaction history on a drawing’s meaning.

Fig. 3 | Performance on interaction communication experiment. Communica-
tion efficiency A across repetitions and B from the pre to post phase, where each
line shows the effect for a given dyad. Efficiency combines both speed and

accuracy, and is plotted relative to the first repetition. Error ribbons and bars
represent 95% CI.
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We compared the yoked and shuffled groups by measuring
changes in recognition performance across successive repetitions
using the same efficiencymetric we previously used. We estimated the
magnitude of these changes by fitting a linear mixed-effects model
that included group (yoked vs. shuffled), repetition number (i.e., first
through eighth), and their interaction, as well as random intercepts
and slopes for each participant. While we found a significant increase
in recognition performance across both groups (b =0.18, t = 12.8,
p <0.001), we also found a large and reliable interaction: yoked par-
ticipants improved their efficiency to a substantially greater degree in
than shuffled participants (b = 0.10, t = 4.9, p < 0.001; see Fig. 5). Ana-
lyzing accuracy (yoked: +15.8%, shuffled: +5.6%; interaction: b =0.62,
z = 2.8, p =0.0046 in logistic regression) or response time (yoked:
-1.6s, shuffled: -1.1s, interaction: b = −0.14, t = −4.8, p <0.001) alone
yielded similar results: the yoked group improved to a greater degree
across each experimental session and practice effects observed on the
set of control objects were comparable (see Supplementary Fig. S2A).

Taken together, these results suggest that third-party observers in
the yoked condition who viewed drawings from a single interaction
were able to take advantage of this continuity to more accurately
identify what successive drawings represented. While observers in the
shuffled condition still improved somewhat over time, being deprived
of this continuity made it relatively more difficult to interpret later
drawings. These findings are consistent with prior work while addi-
tionally controlling for confounds present in earlier studies, including
task practice21, whichwewere able to equate between the shuffled and
yoked conditions. (While not central to the questions posed in the
current studies, it would be possible to further disentangle the impact
of task practice from the effect of repetition on recognition perfor-
mance by including another control condition in which observers are
presented with a randomized sequence of drawings from the same
interaction.)

Such results could arise if early drawings were more strongly
constrained by the visual properties of a shared target object, but later
drawings diverged as different dyads discovered different equilibria in
the space of viable graphical conventions. Under this account, draw-
ings of the same object from different dyads would become increas-
ingly dissimilar from each other across repetitions. We again tested
this prediction using high-level visual representations of each drawing
derived from a deep neural network. Specifically, we computed the
mean pairwise similarity between drawings of the same object within
each repetition index, but produced in different interactions. In other
words, we considered all interactions in which a particular object was
repeatedly drawn, then computed the average similarity between
drawings of that object made by different sketchers at each point in

the interaction. In a mixed-effects regression model including linear
andquadratic terms, aswell as randomslopes and intercepts for object
and dyad, we found a small but reliable negative effect of repetition on
between-interaction drawing similarity (b = −1.4, t = −2.5; Fig. 4C). We
also conducted a permutation test to compare this t value with what
would be expected from scrambling drawings across repetitions for
each sketcher and target object and found that the observed slopewas
highly unlikely under this distribution (95% CI = [−0.57, 0.60],
p <0.001). Taken together, these results suggest that drawings of even
the same object can diverge over time when produced in different
communicative contexts.

Unlike viewers in the interactive visual communication experi-
ment, participants in the yoked condition made their decision based
only on the whole drawing and were unable to interrupt or await
additional information if they were still uncertain. As such, we con-
ducted an exploratory analysis comparing the yoked group against the
original communication group to estimate the contribution of these
(minimal) viewer feedback channels to gains in performance21,53.
Because the feedback channel in our task was lower in bandwidth than
typically used in prior studies, we expected the gap between inter-
active viewers and offline viewers to be relatively small. In a mixed-
effects model with random intercepts, slopes, and interactions for
eachunique trial sequence, we found a strongmain effect of repetition
(b =0.23, t = 12.8, p <0.001), aswell as a weaker but reliable interaction
with group membership (b = −0.05, t = −2.2, p = 0.032; Fig. 5), showing
that the yoked group improved at a slightly more modest rate than
viewers in the original communication experiment had. To better
understand this interaction, we further examined changes in the
accuracy and response time components of the efficiency score (see
Supplementary Fig. S2A). We found that while viewers in the com-
munication experiment were more accurate than yoked participants
overall (communication: 88%, yoked: 75%; main effect: b =0.90,
z = −6.0, p <0.001 in logistic regression), improvements in accuracy
were similar in both groups (communication: +15.9%, yoked: +15.8%).
The interaction instead appeared to be driven by reductions in
response time between the first and final repetitions (communication:
10.9s to 5.84s; yoked: 4.66s to 3.31s). Unsurprisingly, response times
were shorter overall in the yoked group, given that these participants
did not need to wait for the drawing to be produced before making a
decision. Their response times may thus already have been closer to
floor, limiting the possible reduction in response time. (We found no
differential change in performance across yoked and communication
groups in our internal replication, after removing the ability for the
viewer to interrupt the sketcher. On the one hand, closing the gap
between the yoked and communication conditions made the primary

Fig. 4 | Feature analysis for sketches produced during communication task.
A Decrease in number of strokes used to produce drawings across repetitions.
B Increased consistency between successive drawings throughout an interaction.

C Increased dissimilarity between drawings of same object from different interac-
tions. Error bars represent 95% CI.
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yoked vs. shuffled comparison more meaningful in the replication; on
the other hand, because feedback was restricted purely to the viewer’s
guess, the sketcher’s drawings may be less viewer-dependent in this
variant).

Sketchers preserve visual properties that are diagnostic of
object identity
Our results in the previous section suggest that viewers depend on a
combination of visual information and socially mediated associations
to successfully recognize drawings. Specifically, we found that it was
increasingly difficult for viewers in the shuffled condition to make
sense of drawings in the absence of shared interaction history with the
same communication partner. While these findings focused primarily
on the cognitive mechanisms employed by the viewer, the increasing
sparsity of the drawings suggest that decisions about drawing pro-
ductionmay also beguidedby a combinationof visual informationand
social context. In this section we ask:Whywas some visual information
preserved during the formation of these graphical conventions while
other information was not? One possibility is that these choices are
mostly arbitrary: given a sufficiently long interaction history to
establish the association, any scribble could in principle be used to
refer to any object. An alternative possibility is that these choices are
systematically driven by the visual information conveyed by each pen
stroke: sketchersmay preserve information about diagnostic or salient
parts of the target object, rather than omitting visual information in an
arbitrary fashion. For example, in the contexts shown in Fig. 6A, the
folding chair (top row, second from left) has a seat that is similar to the
distractors, but a distinctive backrest and set of legs. If sketchers are
under pressure to produce informative drawings for their partner in
context20,45, their later drawings may come to reflect these pressures.

To test this hypothesis, and obtain reliable estimates of what
information was diagnostic in context, we required a large number of
drawings for a smaller set of contexts. Instead of randomly sampling
different contexts for each dyad, as before, we adapted our reference-
game paradigm to only include two pre-generated contexts for every
dyad, which were counterbalanced across the repeated and control
conditions. We also made one important modification to our experi-
mental design to address a potential confound. Rather than allowing
the viewer to interrupt the sketcher with an early response, we
required the sketcher to click a button once they were ready to show
their drawing to the viewer. Here, drawingduration is purely a function
of the sketcher’s independent decisions about what needs to be
included in a drawing, whereas in our original design, it was a joint

combination of the sketcher’s decision and the viewer’s decision
threshold for when to interrupt. That is, it was possible in the original
design that any apparent effects of conventionalization were purely
driven by the viewer, with the sketcher simply following a heuristic to
continue adding more detail until the viewer made a decision. This
modification prevents such a strategy. Aside from these changes, the
design was identical to the original repeated reference game.

We recruited a sample of 65 additional dyads (130 participants)
for this task. In addition to providing sufficient power for our diag-
nosticity analyses, this new sample also provided an opportunity to
conduct an internal replication to evaluate the robustness of our
results (see Supplementary Methods for successful replications of our
earlier analyses on these new data). Next, we recruited a separate
sample of naive annotators to provide judgments concerning the
diagnosticity of each element in these drawings. Using annotations in
this way is based on the assumption that people are capable of accu-
rately judging both how individual elements of drawings correspond
to parts of an object and what information would be diagnostic of
object identity when performing the viewer task. One group of anno-
tators indicated which parts of objects were depicted in each drawing
by painting over the corresponding regions of the target object image
(Fig. 6B), yielding a binary image mask for each drawing. A second
group of annotators indicated which parts of objects were most
diagnostic in context by painting over regions of each target object
that distinguished it the most from each distractor object, yielding a
graded heat map of diagnostic regions over each object (Supplemen-
tary Fig. S3).

To measure changes in the diagnosticity of drawings over time,
we took the intersection of these annotation maps for each drawing
(see Fig. 6C). We then took the average diagnosticity value per pixel in
the combined strokemap to control for the overall size of the drawing,
yielding a metric reflecting how much the sketcher had selectively
prioritized diagnostic parts of the object overall. Our primary
hypothesis concerned differential changes in diagnosticity over time.
Insofar as new graphical conventions are shaped by communicative
context, gradually depicting the most distinctive regions of the image
while omitting less distinctive regions, we predicted that the repeated
drawings would increase in diagnosticity between the pre and post
phases. Meanwhile, to the extent that these changes in diagnosticity
depend on having communicated repeatedly about an object, we
predicted that the diagnosticity of control drawings would remain
stable over time. To test these hypotheses, we conducted a mixed-
effects regression analysis on diagnosticity values for each drawing.

Fig. 5 | Performance on recognition experiment. A Comparing drawing recog-
nition performance between viewers in communication experiment (dark blue)
with those of yoked (light blue) and shuffled (green) control groups. B Individual

variation in performance on the final repetition in the post phase (relative to that in
the pre phase), where grey lines connect drawings originally produced by the same
sketcher. Error ribbons and bars represent 95% CI.
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We included fixed effects of phase (pre vs. post) and condition
(repeated vs. control) as well as their interaction. While the maximal
random effects structure did not converge, we were able to include
intercepts and main effects for each sketcher and each target object.
Consistent with our hypothesis, we found a significant interaction
(b = −0.05, t = −3.4, p <0.001, Fig. 7): objects in the repeated condition
became increasingly diagnostic as they became sparser, relative to
those in the control condition. More broadly, together with the earlier
model-based analyses, these findings provide converging evidence
that drawings were changing in contentful ways throughout an inter-
action, reflecting both systematic biases towards object-diagnostic
information, as well as variability across dyads with respect to which
aspects of this information to preserve.

Discussion
The puzzle of pictorial meaning has long resisted reductive explana-
tions. Classical theories have either argued that a picture’s meaning is
primarily determinedby visually resembling entities in theworld, or by
appealing to socially mediated conventions. However, these theories
fail to explain the full range of pictures that people produce. In this
paper, we proposed an integrative cognitive theory where both
resemblance and conventional information jointly guide inferences
aboutwhat picturesmean.We evaluated this theory using a Pictionary-
style communication game in which pairs of participants developed
novel graphical conventions to depict objects more efficiently over
time. Our theory predicted that viewers would initially rely on visual
resemblance between the drawing and object to successfully deter-
mine the intended referent, but rely increasingly on experience from
earlier communicative exchanges even as direct resemblance
decreased. We tested these predictions by manipulating the amount
and type of socially mediated experience available to the viewer: we

varied how often each object had been drawn throughout an interac-
tion and whether the drawings were produced by the same individual.
We found that viewers improved to a greater degree for objects that
had been drawn more frequently; conversely, viewers had greater
difficulty recognizing sequences of drawings produced by different
individuals. We further tested the prediction that sketchers in our task
would also increasingly rely on shared experience with a specific
viewer, and found that people produced progressively simpler draw-
ings that prioritized the most diagnostic visual information about the
target object’s identity. Taken together, our findings suggest that
visual resemblance forms a foundation for pictorial meaning, but that
shared experiences promote the emergence of depictions whose
meanings are increasingly determined by interaction history rather
their visual properties alone.

There are several important limitations of the current work that
future studies should address to further evaluate this integrative the-
ory of pictorial meaning (see Fig. 8). First, here we focused on how
people use drawings to communicate about the identity of a visual
object from a single real-world object category (i.e., chairs). Thus it is
not yet clear to what degree the current findings generalize to visual
communication behavior in other settings. While there is reason to
think these findings would generalize to other categories, given recent
findings employing a similarmethodology usingmultiple categories to
reveal the influence of social context20, a natural opportunity for future
work is to directly evaluate the same questions for a broader array of
objects. There are other aspects of our methodological approach that
offered concrete benefits, but could be fruitfully adapted to serve
openquestions in futurework. For example, by using photorealistic 3D
object renderings as stimuli, we were able to leverage recently devel-
oped model-based techniques for encoding high-level visual features
of both drawings and objects into the same latent feature space to

Fig. 6 | Analysis pipeline for evaluating visual diagnosticity. A Annotators
indicated which parts of an object were most diagnostic in context (brighter
regions are more diagnostic), yielding a graded diagnosticity heatmap for each
object.BA separate group of annotators also indicated which parts of objects were
depicted in each drawing, yielding a binary imagemask for each drawing. Images of

objects were rendered from 3Dmeshmodels in the ShapeNet database and appear
in thisfigurewith permission.CMean diagnosticity for a drawingwas computed by
averaging the diagnosticity values of all pixels in the object diagnosticity map that
appeared in that drawing.
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measure key aspects of visual resemblance9. Moreover, focusing on
exemplars appearing in a consistent pose froma single object category
helped to isolate key sources of drawing variability of primary interest,
namely: the visual properties that were most diagnostic of an object’s
identity and the accumulation of shared context between commu-
nicators over time. Nevertheless, people also produce pictures to
communicate about non-visual concepts, such as semantic
associations21,54, narrative information55,56, number57,58, and causal
mechanisms59–62.

It is currently unknown whether the same general-purpose visual
processing mechanisms will be sufficient to explain how graphical
conventions emerge to convey these more abstract concepts. To the
extent that general-purpose visual encoding models can easily gen-
eralize to a particular ‘non-visual’ concept without relying upon ad hoc
associative learning, then visual resemblance may play a stronger role
in explaining how that abstract concept is grounded in graphical
representations of them. On the other hand, if and when such asso-
ciative learning mechanisms are necessary above and beyond such
generic visual processing mechanisms to explain the mapping
between a picture and an abstract concept (e.g., “42” or →), then
conventionality may play a stronger role for explaining how such
pictures become meaningful in context, consistent with existing
descriptive accounts of what distinguishes symbols from icons63–66.
Substantial mechanistic clarity may be gained by developing more
robust computational models that can operate on a broader range of
images to predict a greater variety of abstract meanings beyond the
identity of individual objects. Moreover, people produce pictures for
other purposes than to communicate efficiently about concepts —

indeed, drawings can also induce an aesthetic response67 and be used
for emotional regulation68,69. An important direction for future work
would thus also be to investigate the relationship between the cogni-
tive processes involved in drawing-based communication and the full
set of psychological mechanisms involved during the production and
interpretation of drawings in these other contexts.

Another opportunity for future work comes from observing that
providing the viewer with the ability to interrupt the sketcher was
associated with greater communicative efficiency. While yoked view-
ers in our main communication experiment achieved lower accuracy
than did viewers participating in the reference game, viewers in our
internal replication study who could not interrupt sketchers did not
outperform their corresponding yoked viewers. These findings are
consistent with the notion that even simple forms of social feedback
during real-time communication can be impactful, consistent with
prior work21. These results also raise important questions concerning
the relationship between this feedback and the information conveyed
in subsequent messages in an extended communicative interaction.
For example, supposing that the viewer used the timing of their guess
to signal that the final stroke produced by the sketcher was the most

diagnostic, the sketchermight be able to leverage that cue to prioritize
that information in subsequent drawings. More generally, supposing
that the last stroke provides information that incrementally serves to
increase the viewer’s belief that some object was the target, future
studies could employ drift-diffusion processes to model the time
course of viewer decision making. Such models would posit that
viewers gradually accumulate evidence before reaching somedecision
threshold and making their selection, and a sketcher model that rea-
sons about this diffusion process could explain the inferences that are
supported by viewer feedback70.

Another important direction for future work is to explore why
drawings are produced at different points along the resemblance-
convention continuum at all. In other words, if resemblance is suffi-
cient, why rely upon sociallymediated experience at all?Our paradigm
suggests that production cost may be one important factor driving
suchbehavior. Recent computationalmodels of visual communication
have found that how costly a drawing is to produce (i.e., in time/ink) is
critical for explaining the way people spontaneously adjust the level of
detail to include in their drawings in one-shot visual communication
tasks20. We expect that the consequences of this intrinsic preference
for less costly drawings may be compounded across repetitions
effectively increasing the capacity of the communication channel,
consistent with findings from non-visual communication modalities71.
In other words, the accumulation of feedback and interaction history
allows people to continue to be informative with fewer strokes. The
magnitude of such implicit production costs may vary across indivi-
duals, however, motivating our use of explicit incentives for all parti-
cipants to complete trials efficiently. For example, different dyadsmay
adopt different drawing “styles” that are orthogonal to informational
content, but demand more or less effort or skill. Further work on
pictorial meaning should explore other considerations driving the
tradeoffs between relying on resemblance-based and convention-
based cues, including the reliability of resemblance-based information,
the complexity of the target concept, and the availability of social
feedback e.g., 72,73.

Finally, the framework we have proposed for understanding pic-
torial meaning may help illuminate why visual communication has
been such a uniquely powerful vehicle for the cultural transmission of
knowledge across so many cultures. In particular, our work suggests
that the ability to easily rely on resemblance-based cues to meaning
gives the visual modality distinct advantages over other modalities for
conveying certain information. In other words, the cognitive
mechanisms supporting successful visual communication may be
rooted both in general-purpose visual processingmechanisms that are
broadly shared by humans, facilitating communication between
members of different language communities even in the absence of
shared graphical conventions. At the same time, our work also gen-
eralizes several insights from theories originally developed to account
for communicative convention formation in language, but whose
inference mechanisms have been proposed to apply generally across
communication modalities20,74. Advancing our knowledge of the cog-
nitive mechanisms underlying pictorial meaning may thus lead to a
deeper understanding of how humans are capable of seamlessly inte-
grating such a huge variety of graphical and symbolic representations
to think and communicate.

Fig. 7 | Results for diagnosticity analysis. Changes in the mean diagnosticity of
drawn parts is shown from the pre to post. Error bars represent bootstrapped 95%
confidence intervals.

Fig. 8 | Schematic of pictorial meaning as a spectrum. Our findings support the
notion that both visual resemblance and socially mediated conventions jointly
guide inferences about pictorialmeaning. Leftmost color imagewas rendered from
3D mesh model licensed by TurboSquid.
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Methods
Communication experiment
Participants. For our main communication experiment, we recruited
138 participants fromAmazonMechanical Turk, whowere paired up to
form 69 dyads to play a drawing-based reference game75. To provide
sufficient power for our diagnosticity analyses, we needed to collect a
larger number of observations from a smaller number of specific
contexts, so we recruited an additional 130 participants (66 dyads) to
participate in a follow-up experiment (which also served as an internal
replication). Participants in both experiments were provided a base
compensation of $1.50 for participation and were able to earn an
additional $1.60 in bonus pay based on task performance. On average,
participants received $1.13 in bonus payments for completing this 20-
minute experiment, thereby earning approximately $7-$8 per hour. In
this and subsequent experiments, participants provided informed
consent in accordance with the Stanford IRB.

Stimuli. In order to make our task sufficiently challenging, we sought
to construct visual contexts consisting of objects whose members
were both geometrically complex and visually similar. To accomplish
this, we sampled objects from ShapeNet76, a public database contain-
ing a large number of 3D mesh models of real-world objects. We
restricted our search to 3096 objects belonging to the chair class,
which is among the most diverse and abundant in ShapeNet. To
identify groups of visually similar objects, we employ neural-network
based encodingmodels to extracthigh-level feature representationsof
images. Specifically, we used the PyTorch implementation of the VGG-
19 architecture pre-trained to perform image classification on the
ImageNet database49,77,78, an approach that has been validated in prior
work to provide a reasonable proxy for human perceptual similarity
ratings between images of objects79,80. This feature extraction proce-
dure yields a 4096-dimensional feature vector for each rendering,
reflecting activations in the second fully-connected layer (i.e., fc6) of
VGG-19, a higher layer in the network. We then applied dimensionality
reduction (PCA) and k-means clustering on these feature vectors,
yielding 70 clusters containing between 2 and 80 objects each. Among
clusters that contained at least eight objects, wemanually defined two
object categories containing eight exemplars each, which roughly
correspond to ‘dining chairs’ and ‘waiting-room chairs.’

Experimental design. For each dyad in the main communication
experiment, two sets of four objects were sampled from the object
categories derived above, defining two communication contexts: one
was designated the repeated set while the other served as the control
set. (In half of the dyads, the four control objects were from the same
visual category as repeated objects; in the other half, they were from
different categories within the same basic-level category (i.e., chairs).
Only objects from either the ‘dining’ and ‘waiting-room’ categories
were used as stimuli in the current studies. The rationale for using both
sampling strategies was to support investigation of between-cluster
generalization in future analyses. In our current analyses, we collapse
across these groups.) In our follow-up communication experiment (a
component of our internal replication), instead of randomly sampling
objects fromall ‘waiting-room’ and ‘dining’ chairs,wedefined twofixed
sets of four objects for all participants— one set of four ‘waiting-room’

chairs and one set of four ‘dining’ chairs. The assignment of these sets
to the repeated and control conditions were counterbalanced across
participants.

The experiment consisted of three phases: a pre, repetition, and
post phase. During the repetition phase, there were 24 trials: six
repetition blocks of four trials, with each of the four repeated objects
appearing as the target once in each repetition block. In eachof the pre
and post phases, there were eight trials, with each repeated and con-
trol object appearing once as targets (in their respective contexts) in a
randomly interleaved order. The full experimental session thus

consisted of a sequence of 40 trials (i.e., 8 pre + 24 repetition + 8 post),
with repeated objects serving as the target a total of eight times, and
control objects serving as the target twice (i.e., once at the beginning
and once at the end).

Task procedure. In each dyad, one participant was assigned the
sketcher role and the other was assigned the viewer role. These role
assignments remained the same throughout the experiment. On each
trial, both participants were shown the same set of four objects in
randomized locations. One of the four objects was highlighted on the
sketcher’s screen to designate it as the target. Sketchers drew using
their mouse cursor in black ink on a digital canvas embedded in their
web browser (300 × 300 pixels; pen width = 5px). Each stroke was
rendered on the viewer’s screen in real time and sketchers could not
delete previous strokes. The viewer aimed to select the true target
object from the context of four objects as soon as they were confident
of its identity, and both participants received immediate feedback: the
sketcher learned when and which object the viewer had clicked, and
the viewer learned the true identity of the target. Participants were
incentivized to performboth quickly and accurately. They both earned
an accuracy bonus for each correct response, and the sketcher was
required to complete their drawings in 30 seconds or less. If the viewer
responded correctly within this time limit, participants received a
speed bonus inversely proportional to the time taken until the
response.

Only one procedural difference was introduced for our internal
replication. Instead of allowing the viewer to interrupt the production
of the drawing at any point (as in Pictionary), we asked the viewer to
wait until the sketcher decided to finish drawing and press a “Done”
button. We then showed the completed drawing to the viewer as a
static image instead of animating in each stroke individually. This
change removedpotential confounds between the sketcher’s decision-
making and the viewer’s decision-making, as the drawing timewasnow
purely under the sketcher’s control. Additionally, presenting static
drawings also provided a closer match between the experience of
viewers in the communication experiment and that of participants in
the recognition experiments.

Exclusion criteria. We took several measures to ensure that partici-
pants were attentive and understood the task. First, participants were
only paired up with a partner once they passed a comprehension quiz
covering important points from the instructions. Second, upon com-
pletion of data collection, we flagged and excluded games where
participants either repeatedly timed out (i.e., where the sketcher
repeatedly failed to make a drawing or the viewer repeatedly failed to
make a selection), did not appropriately follow instructions (e.g., using
the drawing canvas to write out text, or producing inappropriate
drawings), or were a significant outlier on key metrics (e.g., having
used an unusually large number of strokes or having achieved unu-
sually low accuracy). Using these criteria, we excluded one game from
ourmain communication experiment and four games from the follow-
up experiment (i.e., internal replication). Nevertheless, the decision to
include/exclude data from these sessions did not substantively impact
our key findings. Third, if one participant disconnected for any reason
prior to completion of the task (e.g., by closing their browser tab or
losing their internet access), the other participant was immediately
directed to the exit survey and awarded the bonus they had earned up
to that point. Of the 73 games that were started in our original task,
only five disconnected; in our replication, only six of the 76 games
disconnected.

Recognition experiments
Participants. In our main set of recognition experiments, we recruited
245 participants via AmazonMechanical Turk and excluded data from
22 participants who did not meet our inclusion criteria for accurate
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and consistent response on attention-check trials, leaving a sample of
223 participants (i.e., 106 in yoked, 117 in shuffled). We also conducted
follow-up recognition experiments accompanying the second set of
reference-game data collected to enable our diagnosticity analyses
and provide an internal replication. In these experiments, we obtained
data from an additional 225 participants, after exclusions (i.e., 100 in
yoked, 125 in shuffled).

Experimental design & task procedure. On each trial, participants
were presentedwith a static rendering of a completed drawing and the
same set of four objects that accompanied that drawing in the original
visual communication experiment. They were then asked to indicate
which of the four objects they believed the drawing was intended to
represent. They also received exactly the same feedback, as well as the
same accuracy and speed-related incentives as in the communication
experiment. To ensure task engagement, we included five identical
attention-check trials that appeared once every eight trials. Each
attention-check trial presented the same set of objects and drawing,
which we identified during piloting as the most consistently and
accurately recognized by naive participants. Only data from partici-
pantswho responded correctlyon at least four out offiveof these trials
were retained in subsequent analyses. Each participant was randomly
assigned to one of two conditions: a shuffled group and a yoked group.

Participants in the shuffled group were shown a sequence of
drawings spliced together from many different interactions, thus dis-
rupting the continuity experienced by viewers paired with a single
sketcher. Specifically, each shuffled participant viewed drawings from
10 different interactions in the original communication experimental
cohort. Four drawings came from each of those interactions, one
drawing of each object in a visual context. Each set of four drawings
appeared in the same repetition block as it had originally, such that
drawings appeared at approximately the same time point in the
recognition experiment as they had in the original communication
experiment. For example, if a drawing was produced in the 5th repe-
tition block in the original experiment, then it also appeared in the 5th
repetition block for shuffled participants.

Because the recognition task differed in several ways from the
interactive communication task, we also included a more directly
comparable yoked control group who were shown a sequence of
drawings taken from a single interaction, closely matching the
experience of viewers in the communication experiment while also
being directly comparable to the experience of the shuffled group.
Participants in the yoked group viewed all 40 drawings from a single
interaction in the communication experiment in the same sequence
that the original viewer had. Thus the keydifferencebetween the yoked
and shuffled groups was whether drawings came from the same
sketcher, preserving continuity in communicative context across
repetition blocks, or whether drawings came from a large number of
different sketchers, disrupting that continuity.

Model-based analyses of drawing features
To extract high-level visual features of drawings, we used the same
PyTorch implementation of the VGG-19 architecture that we used to
cluster our stimuli49,78. This feature extractionprocedure yields a 4096-
dimensional vector representation extracted from the penultimate
layer of the neural network (i.e., fc6) for each drawing of every object,
in every repetition, from every interaction. Using this feature basis,
we compute the similarity between any two drawings as the
Pearson correlation between their feature vectors (i.e.,

sij = covð r!i, r
!

jÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varð r!iÞ � varð r!jÞ
q

). Using these learned feature

representations to approximate human judgments about the high-
level visual properties of drawings has been validated in prior work9,20.
In particular, the features we analyze are taken from deeper layers of
VGG-19 that have been shown to provide a more explicit

representation of semantically relevant visual features (i.e., about
object identity) than pixel-based representations or features from
earlier layers20. This prior work, when taken together with other work
comparing how well VGG-19 performs on independently defined
neural and behavioral benchmarks related to visual object
recognition81, justifies our focus on analyzing features from VGG-19.
Nevertheless, there is also reason to believe that other deep convolu-
tional neural network architectures (e.g., AlexNet, ResNet) trained in
similar ways could be used insteadwithout substantially impacting our
findings79. Following prior work9,20, we focus our analyses on targeted
questions concerning the impact of our experimental manipulations
on the amount of task-relevant visual information contained in each
drawing. However, we note that such feature representations also
support exploratory analyses examining correspondences between
particular subsets of these features and particular aspects of each
image they are most sensitive82–84, a promising avenue for future
research.

Empirical measurement of drawing-to-object correspondences
Amajor challenge that arises when comparingmultiple drawings is the
drawing-to-object correspondence problem. Different drawings of the
same object may be made at different scales, or translated with some
spatial offset on the canvas. Additionally, when different drawings
depict different partial views of an object, it is not straightforward to
determine how exactly strokes in one drawing should map onto
strokes in the other. To address these challenges, we designed a
drawing-to-object mapping task that allows all sketches in our dataset
to be projected into a common space (see Supplementary Fig. S1A).
This task was implemented with a simple annotation interface. On one
side of the screen, participants were shown a line drawing. On the
other side of the screen, theywere shownapaint canvas containing the
target object the drawing was intended to depict. For each stroke in
the line drawing, participants were asked to paint over the corre-
sponding region of the target object. We highlighted one stroke at a
time, using a bright green color to visually distinguish it, and partici-
pants clicked “Done”when they were finishedmaking their annotation
for that stroke. Participants were not allowed to proceed to the next
stroke until some paint was placed on the canvas. To provide context,
we also showed participants the history of the interaction in which the
drawing appeared, so it would be clear, for instance, that an isolated
half-circle corresponds to the top of the back rest, given more
exhaustive earlier drawings. They continued through all strokes of the
given drawing in this way, and then proceeded to the next drawing,
annotating a total of 10 different drawings in a session. We recruited
443 participants from Amazon Mechanical Turk to perform the
annotation task. We excluded participants who consistently provided
low-quality annotations (i.e., participants whomade randommarks on
the canvas to finish the task as quickly as possible) through a combi-
nationofmanual examination and response latencies.We continued to
recruit until all 2600 drawings in our dataset had at least one high-
quality drawing-to-object correspondence map. Finally, to reduce
noise from annotators who drew outside the bounds of the image
(where diagnosticity was low by definition), we applied a simple
masking step in post-processing. Specifically, we extracted a seg-
mentation map from the ground truth image of the object to zero out
anypixels in themap that corresponded to thebackground rather than
the object.

Empirical measurement of object-diagnostic features
We recruited 117 participants from Amazon Mechanical Turk to pro-
vide diagnosticity maps for each target object, relative to its context.
The task interface was similar to the one we used to elicit drawing-to-
object correspondences (see Supplementary Fig. S1B). A target object
was displayed on the left side of the screen and a foil was displayed on
the right side. Participants were instructed to paint over the parts of
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the target object that weremost distinctive and different from the foil.
We elicited pairwise comparisons instead of showing the full context
to reduce confusion about what wasmeant by “most different” (i.e., in
a large enough context, every part of an object has some difference
from at least one distractor). Each participant provided exactly one
response for all 16 target objects used in our fixed-context experiment,
and we randomly assigned participants to one of 24 possible permu-
tations of distractors, such that different participants saw each target
object paired with different distractors. This yielded at least 30 ratings
for each pair of objects. To create our final heat maps (as shown in
Fig. 6A), we aggregated diagnosticity ratings across the three possible
foils in post-processing by taking the mean pixel intensity for each
pixel. Thus, the highest diagnosticity pixels for an object are those
which were marked most consistently as distinguishing it from the
most distractors.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data for results presented in this article is available in the fol-
lowing GitHub repository: https://github.com/hawkrobe/graphical_
conventions.

Code availability
All code for results presented in this article is available in the fol-
lowing GitHub repository: https://github.com/hawkrobe/graphical_
conventions.
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