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Abstract

Drawing is a versatile technique for visual communication,
ranging from photorealistic renderings to schematic diagrams
consisting entirely of symbols. How does a medium spanning
such a broad range of appearances reliably convey meaning? A
natural possibility is that drawings derive meaning from both
their visual properties as well as shared knowledge between
people who use them to communicate. Here we evaluate this
possibility in a drawing-based reference game in which two
participants repeatedly communicated about visual objects.
Across a series of controlled experiments, we found that pairs
of participants discover increasingly sparse yet effective ways
of depicting objects. These gains were specific to those
objects that were repeatedly referenced, and went beyond what
could be explained by task practice or the visual properties of
the drawings alone. We employed modern techniques from
computer vision to characterize how the high-level visual fea-
tures of drawings changed, finding that drawings of the same
object became more consistent within a pair of participants and
divergent across participants from different interactions. Taken
together, these findings suggest that visual communication
promotes the emergence of depictions whose meanings are
increasingly determined by shared knowledge rather than their
visual properties alone.

Keywords: alignment; coordination; iconicity; sketch under-
standing; visual communication

Introduction

From ancient etchings on cave walls to modern digital dis-
plays, visual communication lies at the heart of key human
innovations (e.g., cartography, data visualization) and forms a
durable foundation for the cultural transmission of knowledge
and higher-level reasoning. Perhaps the most basic and
versatile technique supporting visual communication is draw-
ing, the earliest examples of which date to at least 40,000-
60,000 years ago (Hoffmann et al., 2018). What began
as simple mark making has since been adapted to a wide
array of applications, ranging from photorealistic rendering
to schematic diagrams consisting entirely of symbols.

Even in the relatively straightforward case of drawing from
life, there are countless ways to depict the same object. How
does a communication medium spanning such a broad range
of appearances reliably convey meaning? On the one hand,
prior work has found that semantic information in a figurative
drawing, i.e., the object it represents, can be derived purely
from its visual properties (Fan, Yamins, & Turk-Browne,
2018). On the other hand, other work has emphasized the
role of socially-mediated information for making appropriate
inferences about what even a figurative drawing represents
(Goodman, |1976)).

How can these two perspectives be reconciled? Our
approach is to consider the joint contributions of visual
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Figure 1: Repeated visual communication depicting the same object.

information and social context in determining how drawings
derive meaning (Abell, 2009), and to propose that a crit-
ical factor affecting the balance between the two may be
the amount of shared knowledge between communicators.
Specifically, we explore the hypothesis that accumulation
of shared knowledge via extended visual communication
may promote the development of increasingly schematic yet
effective ways of depicting an object, even as these ad hoc
graphical conventions may be less readily apprehended by
others who lack this shared knowledge.

To investigate this hypothesis, we used an interactive
drawing-based reference game in which two participants
repeatedly communicated about visual objects. We examined
both how their task performance and the drawings they
produced changed over time (see Fig. [I). Our approach
was inspired by a large literature that has explored how
extended interaction influences communicative behavior in
several modalities, including language (Clark & Wilkes-
Gibbs, 1986 Hawkins, Frank, & Goodman, 2017)), gesture
(Goldin-Meadow, McNeill, & Singleton, [1996), and draw-
ings (Garrod, Fay, Lee, Oberlander, & MacLeod, 2007;
Galantucci, 2005). There are three aspects of the current
work that advance our prior understanding: first, we include a
control set of objects that were not repeatedly drawn but only
shown at the beginning and end of the interaction, allowing us
to measure the specific contribution of repeated reference vs.
general practice effects; second, we measure how strongly the
visual properties of drawings drive recognition in the absence
of interaction history for naive viewers, while equating other
task variables; and third, we employ recent advances in
computer vision to quantitatively characterize changes in the
high-level visual properties of drawings across repetitions.
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Figure 2: (A) Stimuli from ShapeNet. (B) Each pair of participants was randomly assigned two sets of four objects, each set from one of the
two categories. (C) Repeated objects drawn eight times throughout; control objects drawn once at the beginning and end of each interaction.

Part I: How does repeated reference support
successful visual communication?

Our first goal was to understand how people learn to com-
municate about visual objects across repeated visual com-
munication. To accomplish this, we developed a drawing-
based reference game for two participants. On each trial, both
participants shared a communicative context, represented by
an array of four objects. One of these objects was privately
designated the ‘target’ to the sketcher. The sketcher’s goal
was to draw the target so that the viewer could select it
from the array as quickly and accurately as possible. We
hypothesized that learning would be object-specific: that over
repeated visual reference to a particular object, participants
would discover ways of depicting that object more effectively
relative to non-repeated control objects.

Methods: Visual communication experiment

Participants We recruited 138 participants from Amazon
Mechanical Turk, who were grouped into 69 pairs
[2015). Within each experimental session, one participant
was assigned the sketcher role and the other the viewer role,
and these role assignments remained the same throughout
the experiment. Data from two pairs were excluded due to
unusually low performance (i.e., accuracy < 3 s.d. below
the mean). In this and subsequent experiments, participants
provided informed consent in accordance with the Stanford
IRB.

Stimuli In order to make our task sufficiently challenging,
we sought to construct communicative contexts consisting
of objects whose members were both geometrically complex
and visually similar. To accomplish this, we sampled objects
from the ShapeNet (Chang et al.,[2015)), a database containing
a large number of 3D mesh models of real-world objects.
We restricted our search to 3096 objects belonging to the
chair class, which is among the most diverse and abundant
in ShapeNet. To identify groups of visually similar chairs, we
first extracted high-level visual features from 2D renderings
of each object using a deep convolutional neural network
(DCNN) architecture, VGG-19 (Simonyan & Zisserman,
[2014). This network had been previously trained to recognize

objects in photos from the ImageNet database (Deng et al.
2009), containing 1.2 million natural photographs of 1000
different object classes. Trained DCNN models have been
shown to predict human perceptual similarity judgments
about objects (Kubilius, Bracci, & de Beeckl [2016}; [Peterson,|
|Abbott, & Griffiths, [2018), as well as neural population
responses in visual cortex during object recognition
let all, 2014} [Giicli & van Gervenl 2015). As such, they
provide a principled choice of encoding model for extract-
ing high-level visual information from images. Following
previous work that has employed DCNN models to evaluate
perceptual similarity (Peterson et al.| 2018, [Kubilius et al.}
, for each image we extract a 4096-dimensional feature
vector reflecting activations in the second fully-connected
layer (i.e., £c6) of VGG-19, a higher layer in the network.
We then applied dimensionality reduction (PCA) and k-
means clustering on these feature vectors, yielding 70 clusters
containing between 2 and 80 objects each. Among clusters
that contained at least eight objects, we manually identified
two visual categories containing eight objects each (Fig.[2A).

Task Procedure On each trial, both participants were
shown the same set of four objects in randomized locations.
One of the four objects was highlighted on the sketcher’s
screen to designate it as the target. Sketchers drew using
their mouse cursor in black ink on a digital canvas embedded
in their web browser (300 x 300 pixels; pen width = 5px).
Each stroke was rendered on the viewer’s screen in real
time and sketchers could not delete previous strokes. The
viewer aimed to click one of the four objects as soon as they
were confident of the identity of the target, and participants
received immediate feedback: the sketcher learned when
and which object the viewer had clicked, and the viewer
learned the true identity of the target. Both participants were
incentivized to perform both quickly and accurately. They
both earned an accuracy bonus for each correct response, and
the sketcher was required to complete their drawings in 30
seconds or less. If the viewer responded correctly within this
time limit, participants also received a speed bonus inversely
proportional to the time taken until the response.
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Figure 3: Communication efficiency across repetitions. Efficiency
combines both speed and accuracy, and is plotted relative to the first
repetition. Error ribbons represent 95% CI.

Design For each pair of participants, two sets of four
objects were randomly sampled to serve as communication
contexts: one was designated the repeated set while the other
served as the control set (Fig. )The experiment consisted
of three phases (Fig. 2IC). During the repeated reference
phase, there were six repetition blocks of four trials, and each
of the four repeated objects appeared as the target once in
each repetition block. In a pretest phase at the beginning
of the experiment and a posttest phase at the end, both
repeated and control objects appeared once as targets (in their
respective contexts) in a randomly interleaved order.

Results

Because objects were randomly assigned to repeated and
control conditions, we expected no differences in task per-
formance in the pretest phase. We found that pairs identified
the target at rates well above chance in this phase (75.7%
repeated, 76.1% control, chance = 25%), suggesting that they
were engaged with the task but not at ceiling performance.
We found no difference in accuracy across conditions (mean
difference: 0.3%, bootstrapped CI: [—7%,7%)]).

In order to measure how well pairs learned to communicate
throughout the rest of their interaction, we used a measure
of communicative efficiency (the balanced integration score,
Liesefeld & Janczyk, 2018)) that takes both accuracy (i.e.,
proportion of correct viewer responses) and response time
(i.e., latency before viewer response) into account. This
efficiency score is computed by first z-scoring accuracy and
response time across repetitions within an interaction to map
values from different interactions to the same scale, and then
subtracting the standardized response time from standardized
accuracy. It is highest when pairs are both fast and accurate,
and lowest when they make more errors and take longer,
relative to their own performance on other trials.

n half of the pairs, the four control objects were from the
same stimulus cluster as repeated objects; in the other half, they
were from different clusters. The rationale for this was to support
investigation of between-cluster generalization in future analyses.
In current analyses, we collapse across these groups.

To evaluate changes in communicative efficiency, we fit
a linear mixed-effects model including random intercepts,
slopes, and interactions for each pair of participants. We
found a main effect of increasing communicative efficiency
for all targets between the pre and post phases (b =1.45, t =
14.3, p < 0.001), reflecting general improvements due to task
practice. Critically, however, this analysis also revealed a
reliable interaction between phase and condition: commu-
nicative efficiency improved to a greater extent for repeated
objects than control objects (b = 0.648, t =3.09, p = 0.003;
see Fig. [3). Analysis of changes in raw accuracy yielded a
similar result: performance on repeated objects improved by
14.5%, while performance on control objects only improved
by 7.1%. Together, these data show that there are benefits
of repeatedly communicating about an object that accrue
specifically to that object, suggesting the formation of object-
specific graphical conventions.

Part II: What explains gains in efficiency?

Our visual communication experiment established that pairs
of participants coordinate on more efficient and object-
specific ways of depicting targets. This raises the question:
to what extent do these gains in efficiency reflect the accu-
mulation of interaction-specific shared knowledge between a
sketcher and viewer, as opposed to the combination of task
practice and the inherent visual properties of their drawings?

To disentangle the contributions of these different factors,
we conducted two control experiments to estimate the how
recognizable these drawings were to naive viewers outside the
social context in which they were produced. Participants in
one control group were shown a sequence of drawings taken
from a single interaction, closely matching the experience of
viewers in the communication experiment. Participants in
a second control group were instead shown a sequence of
drawings pieced together from many different interactions,
thus disrupting the continuity experienced by viewers paired
with a single sketcher. Insofar as interaction-specific shared
knowledge contributed to the efficiency gains observed pre-
viously, we hypothesized that the second group would not
improve as much over the course of the experimental session
as the first group would.

Methods: Recognition Control Experiments

Participants We recruited 245 participants via Amazon
Mechanical Turk. We excluded data from 22 participants
who did not meet our inclusion criterion for accurate and
consistent response on attention-check trials (see below).

Task, Design, & Procedure On each trial, participants
were presented with a drawing and the same set of four
objects that accompanied that drawing in the original visual
communication experiment. They also received the same
accuracy and speed bonuses as viewers in the communication
experiment. To ensure task engagement, we included five
identical attention-check trials that appeared once every eight
trials. Each attention-check trial presented the same set of
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Figure 4: Comparing drawing recognition performance between
viewers in communication experiment with those of yoked and
shuffled control groups. Error ribbons represent 95% CI.

objects and drawing, which we identified during piloting as
the most consistently and accurately recognized by naive
participants. Only participants who responded correctly on
at least four out of five of these trials were retained in
subsequent analyses.

Each participant was randomly assigned to one of two
conditions: a yoked group and a shuffled group. Each yoked
participant was matched with a single interaction from the
original cohort and viewed 40 drawings in the same sequence
the original viewer had. Those in the shuffled group were
matched with a random sample of 10 distinct interactions
from the original cohort and viewed four drawings from each
in turn, which appeared within the same repetition block as
they had originally. For example, if a drawing was produced
in the fifth repetition block in the original experiment, then it
also appeared in the fifth block for shuffled participants.

At the trial level, groups in both conditions thus received
exactly the same visual information and performed the task
under the same incentives to respond quickly and accurately.
At the repetition level, both groups received exactly the
same amount of practice recognizing drawings. Thus any
differences between these groups are attributable to whether
drawings came from the same communicative interaction,
which would support the accumulation of interaction-specific
experience, or from several different interactions, where such
accumulation would be minimal.

Results

Interaction-specific history enhances recognition by
third-party observers We compared the yoked and shuf-
fled groups by measuring changes in recognition performance
across successive repetitions using the same efficiency metric
we previously used. We estimated the magnitude of these
changes by fitting a linear mixed-effects model that included
group (yoked vs. shuffled), repetition number (i.e., first
through eighth), and their interaction, as well as random
intercepts and slopes for each participant. While we found
a significant increase in recognition performance across both
groups (b = 0.18, + = 12.8, p < 0.001), we also found a

large and reliable interaction: yoked participants improved
to a substantially greater degree than shuffled participants
(b=0.10, t =4.9, p < 0.001; Fig. 4). Examining accuracy
alone yielded similar results: the yoked group improved to a
greater degree across the session (yoked: +15.8%, shuffled:
+5.6%). Taken together, these results suggest that third-
party observers in the yoked condition who viewed drawings
from a single interaction were able to take advantage of this
continuity to more accurately identify what successive draw-
ings represented. While observers in the shuffled condition
still improved over time, being deprived of this interaction
continuity made it relatively more difficult to interpret later
drawings.

Viewer feedback also contributes to gains in performance
Unlike viewers in the interactive visual communication ex-
periment, participants in the yoked condition made their
decision based only on the whole drawing and were unable
to interrupt or await additional information if they were still
uncertain. Sketchers could have used this feedback to modify
their drawings on subsequent repetitions. As such, comparing
the yoked and original communication groups provides an es-
timate of the contribution of these viewer feedback channels
to gains in performance (Schober & Clark,|1989). In a mixed-
effects model with random intercepts, slopes, and interactions
for each unique trial sequence, we found a strong main effect
of repetition (b = 0.23, r = 12.8, p < 0.001), as well as a
weaker but reliable interaction with group membership (b =
—0.05, r = —2.2, p = 0.032, Fig. ), showing that the yoked
group improved at a more modest rate than viewers in the
original communication experiment had.

To better understand this interaction, we further examined
changes in the accuracy and response time components of
the efficiency score. We found that while viewers in the
communication experiment were more accurate than yoked
participants overall (communication: 88%, yoked: 75%),
improvements in accuracy over the course of the experiment
were similar in both groups (communication: +14.5%, yoked:
+15.8%). The interaction instead appeared to be driven
by differential reductions in response time between the first
and final repetitions (communication: 10.9s to 5.84s; yoked:
4.66s to 3.31s). These reductions were smaller in the yoked
group, given that these participants did not need to wait for
each stroke to appear before making a decision, and thus may
have already been closer to floor.

Part III: How do visual features of drawings
change over the course of an interaction?

The results so far show that repeated visual communication
establishes object-specific, interaction-specific ways of effi-
ciently referring to objects. An intriguing implication is that
interacting pairs achieved this by gradually forming ad hoc
graphical conventions about what was relevant and sufficient
to include in a drawing to support rapid identification of the
target object. Here we explore this possibility by examining
how the drawings themselves changed throughout an interac-
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Figure 5: (A) Sketchers use fewer strokes over time. (B) Visualizing importance of individual strokes in successive drawings. (C) Drawings
become increasingly dissimilar from initial drawing. (D) Drawings become more consistent from repetition to repetition. (E) The same object
is drawn increasingly dissimilarly by different sketchers. Error ribbons represent 95% CI, dotted lines represent permuted baseline.

tion. Concretely, we investigated four aspects that would re-
flect the increasing contribution of interaction-specific shared
knowledge: first, decreasing number of strokes used (i.e.,
reducing motor cost of each drawing); second, increasing
dissimilarity from the initial drawing produced (i.e., cumula-
tive drift from the starting point); third, increasing similarity
between successive drawings (i.e., convergence on internally
consistent ways of depicting objects within an interaction);
fourth, increasing dissimilarity between drawings of the same
object produced in different interactions (i.e., discovery of
multiple viable solutions to the coordination problem).

Measuring visual similarity between drawings

Measuring visual similarity between drawings depends upon
a principled approach for encoding their high-level visual
properties. Here we capitalize on recent work validating
the use of deep convolutional neural network models to
encode such perceptual content in drawings (Fan et al.
2018). As when identifying clusters of similar object stimuli,
we again used VGG-19 to extract 4096-dimensional feature
vector representations for drawings of every object, in every
repetition, from every interaction. Using this feature basis,
we compute the similarity between any two drawings as the
Pearson correlation between their feature vectors (i.e., s;; =

coviT)/\/var ) var(F)).-

Results

Fewer strokes across repetitions A straightforward expla-
nation for the gains in communication efficiency observed
in Part I is that sketchers were able to use fewer strokes
per drawing to achieve the same level of viewer recognition
accuracy. Indeed, we found that the number of strokes in
drawings of repeated objects decreased steadily as a function
of repetition in a mixed-effects model (b = —0.216, ¢ =
—6.00; Fig. [5]A), suggesting that pairs were increasingly able
to rely upon shared knowledge to communicate efficiently.
This result raises a question about which strokes are preserved
across successive repetitions during the formation of graph-
ical conventions. In ongoing work, we are using a lesion
method to investigate the “importance” of each stroke within

a drawing for explaining similarity to the next repetition’s
drawing of that object. We re-render the drawing without
each stroke and compute the similarity, yielding a heat map
across strokes (see Fig. BB for an example visualization).
The more dissimilar the lesioned drawing without a particular
stroke is to an intact version of the next repetition’s drawing,
the more “important” we consider that stroke to be.

Increasing dissimilarity from initial drawing Mirroring
the observed reduction in the number of strokes across
repetitions, we hypothesized that there was also cumulative
change in the visual content of drawings across repetitions.
Concretely, we predicted that drawings would become in-
creasingly dissimilar from the initial depiction. We tested
this prediction in a mixed-effects regression model including
linear and quadratic terms for repetition as well as intercepts
for each target and pair. We found a significant decrease in
similarity to the initial round across successive repetitions,
(b=-0.62, r = —5.59; Fig.), suggesting that later draw-
ings had moved to a different region of visual feature space.
However, since the entire distribution of drawings may have
drifted to a different region of the visual feature space for
generic reasons (i.e., because they were sparser overall), we
conducted a stricter permutation test. We scrambled drawings
across pairs but within each repetition and target and re-ran
our mixed-effects model. The observed effect fell outside this
null distribution (CI = [-3.53 —0.88], p < .001), showing
that successive drawings by the same sketcher deviated from
their own initial drawing to a greater degree than would be
expected due to generic differences between drawings made
at different timepoints in an interaction.

Increasing internal consistency within interaction As
sketchers modified their drawings across successive repeti-
tions, we additionally hypothesized that they would converge
on increasingly consistent ways of depicting each object. To
test this prediction, we computed the similarity of successive
drawings of the same object made in the same interaction
(i.e. repetition k to k+1). A mixed-effects model with
random intercepts for both object and pair showed that sim-
ilarity between successive drawings increased substantially



throughout an interaction (b = 0.53, ¢ = 5.03; Fig.[5). Again,
we compared our empirical estimate of the magnitude of this
trend to a null distribution of slope ¢ values generated by
scrambling drawings across pairs. The observed increase
fell outside this null distribution (CI = [-3.21,—0.60],p <
.001), providing evidence that increasingly consistent ways
of drawing each object manifested only for series of drawings
produced within the same interaction.

Increasingly different drawings across interactions Our
recognition control experiments suggested that the graphical
conventions discovered by different pairs were increasingly
opaque to outside observers. This effect could arise if early
drawings were more strongly constrained by the visual prop-
erties of a shared target object, but later drawings diverged as
different pairs discovered different equilibria in the space of
viable graphical conventions. Under this account, drawings
of the same object from different pairs would become increas-
ingly dissimilar from each other across repetitions. We tested
this prediction by computing the mean pairwise similarity
between drawings of the same object within each repetition
index, but produced in different interactions. Specifically,
for each object, we considered all interactions in which that
object was repeatedly drawn. Then, for each repetition index,
we computed the average similarity between drawings of
that object. In a mixed-effects regression model including
linear and quadratic terms, as well as random slopes and
intercepts for object and pair, we found a small but reliable
negative effect of repetition on between-interaction drawing
similarity (b = —1.4, t = —2.5; Fig.[5E). We again conducted
a permutation test to compare this ¢ value with what would
be expected from scrambling sketches across repetitions for
each sketcher and target object. We found that the observed
slope was highly unlikely under this distribution (CI =
[-0.57,0.60], p < 0.001), even if the similarity at each
round was not so unlikely.

Discussion

In this paper, we investigated the joint contributions of visual
information and social context to determining the meaning
of drawings. We observed in an interactive Pictionary-style
communication game that pairs of participants discover in-
creasingly sparse yet effective ways of depicting objects over
repeated reference. Through a series of control experiments,
we demonstrated that these conventionalized representations
were both object-specific and interaction-specific: drawings
were harder for independent viewers to recognize without
sharing the same interaction history. Furthermore, by analyz-
ing the high-level visual features of drawings, we found that
they became increasingly consistent within an interaction, but
that different pairs discover different equilibria in the space
of viable graphical conventions. Taken together, our findings
suggest that repeated visual communication promotes the
emergence of depictions whose meanings are increasingly
determined by interaction history rather than their visual
properties alone.

A key experimental design choice was the use of visual
objects as the targets of reference, by contrast with the
verbal labels or audio clips used in prior work (Galantucci
& Garrod, 2011} [Fay, Garrod, Roberts, & Swoboda, [2010).
As such, communication between the sketcher and viewer
was grounded in the same visual information about the
appearance of these objects, encouraging the production of
more ‘iconic’ initial drawings that more strongly resembled
the target object (Verhoef, Kirby, & de Boer, [2016} |Perlman,
Dale, & Lupyan, 2015). As their communication became in-
creasingly efficient across repetitions, their drawings became
simpler and apparently more ‘abstract’. An exciting direction
for future work is to develop robust and principled com-
putational measures of the degree of visual correspondence
between any drawing and any target object, thereby shedding
light on the nature of visual abstraction and iconicity.

A second important design choice was the use of a speed
bonus incentivizing participants to complete trials quickly.
What role do such incentives play in the formation of
graphical conventions? Recent computational models of
visual communication have found that both how costly a
drawing is to produce (i.e., time/ink) and how informative
a drawing is in context are critical for explaining the way
people spontaneously adjust the level of detail to include
in their drawings in one-shot visual communication tasks
(Fan, Hawkins, Wu, & Goodman, 2019). The consequences
of this intrinsic preference for less costly drawings may
be compounded across repetitions, as the accumulation of
interaction history allows people to be equally informative
with fewer strokes (Hawkins et al.| [2017). The magnitude
of these intrinsic costs may vary across individuals, however,
and the speed bonus made them explicit.

A major open question raised by our work concerns how
people decide what information to preserve or discard across
repetitions. One possibility is that successful viewer com-
prehension is attributed to the most recent strokes produced,
leading these to be more strongly preserved. For example,
if the viewer was able to correctly identify the target only
after the backrest was drawn, the sketcher may continue
to selectively draw this part. Another possibility is that
sketchers preserve what they judge to be the most diagnostic
information about the target, regardless of when the viewer
made their response. For example, sketchers may focus on
drawing the backrest if it strongly distinguishes the target
from distractors in context. Future work should disentangle
these possibilities empirically and via development of com-
putational models of visual communication that can learn
from task-related feedback, as well as judge which strokes
would be most diagnostic.

Visual communication is a powerful vehicle for the cultural
transmission of knowledge. Over time, advancing our knowl-
edge of the cognitive mechanisms underlying the formation
of graphical conventions may lead to a deeper understanding
of the origins of modern symbolic systems for communica-
tion and the design of better visual communication tools.
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