Improvised Numerals Rely on 1-to-1 Correspondence
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Abstract

Symbolic representations of number are instrumental to math-
ematical reasoning and many aspects of social organization.
What explains their emergence in human cultures? To un-
derstand how functional and cognitive constraints impact peo-
ple’s communication about number, we used a drawing-based
reference game to investigate how human dyads coordinated
to form novel number systems. We found a systematic bias
towards symbols exploiting 1-to-1 correspondence to objects
in visual arrays, and that this strategy was contingent on the
communicative relevance of number. Moreover, the meaning
of these symbols was transparent to third party observers not
present during their production. Finally, model-based analy-
ses of these symbols’ visual properties suggest that the abil-
ity to decode exact quantity from them may rely on percep-
tual processing mechanisms beyond those sufficient for object
recognition. These findings contribute to our understanding of
how both communicative need and capacity for visual abstrac-
tion constrain the emergence of iconic representations of exact
number.
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Introduction

Numerals are among the most powerful technologies behind
humans’ capacity for complex social organization. They have
emerged repeatedly in a range of distinct forms over human
history in tandem with the emergence of state societies and
have acted in different ways to both promote the economic
interactions of groups and reinforce the power and prestige
of the state (Chrisomalis} [2020). Simultaneously, numerical
notation has served as a potent computational tool for engi-
neering, timekeeping, and all manner of scientific inquiry.

Numerals are a pervasive and powerful tool, but the ability
to wield them is not trivial: humans must overcome band-
width limitations in both perception (Jevons} |1871; [Dehaene
& Cohen, [1994) and working memory (Cowan, [2010; Bad-
deleyl |1986) to encode large quantities accurately. Moreover,
many important numerical concepts are not directly observ-
able (e.g. negative numbers) or are too large to be easily com-
prehended (e.g. a billion).

The historical diversity of numeral systems provides clues
about how we overcome these challenges, and raises the
question of what cognitive mechanisms and functional con-
straints might explain their origins. A common pattern in
numeral systems is the use of iconic, 1-to-1 matching strate-
gies to compose small numbers, and non-iconic conventions
to encode larger numbers (Ifrah, 2000). For example, a Ro-
man numeral like 'II’ is iconic: it bears a structural sim-
ilarity to its meaning (one stroke for each member of any

set of 'two’), and its meaning can be derived perceptually
at a glance. Numerals that exclusively use 1-to-1 match-
ing are frequently attested in newly emergent numeral sys-
tems, such as those documented in ancient Mesopotamia
(Schmandt-Besserat, [{1980). However, this convention pro-
duces problems beyond the subitizing limit: *TIIIIIIID can-
not be quickly deciphered. To avoid this issue, many (but not
all) numeral systems feature non-iconic symbols: the numeral
"XII” represents the same quantity, and can also be read at a
glance — though only by those who already know the arbitrary
convention. What conditions elicit — or preclude — the use of
such non-iconic numerals, and the complex rules of compo-
sition that govern them (e.g., why must the "II” come after the
"X’ and not before?)?

Recent laboratory studies suggest the importance of iconic-
ity for constraining the tokens that emerge in ad hoc com-
munication systems. Studies employing drawing (Hawkins,
Sano, Goodman, & Fan, 2019; Mukherjee, Hawkins, & Fan)
2019), toy languages with written nonsense syllables (Raviv,
Meyer, & Lev-Aril, [2019), and whistled languages (Hofer &
Levy, 2019;|Verhoef, Kirby, & Padden![201 1};|Verhoef, Kirby,
& de Boer} 2016) all indicate that communicative systems of-
ten feature some iconicity in their early stages, but that this
iconicity is often sacrificed in favour of combinatorial syn-
tactic rules (Hofer & Levy, [2019) or abstracted social con-
ventions (Hawkins et al.l 2019). This work also shows that
humans can successfully isolate functionally relevant infor-
mation in novel communication systems (Winters, Kirby, &
Smithl [2015). This capacity for accommodating situational
context is especially relevant for early numerals, which often
feature qualitative information about their referent (the thing
being quantified; e.g. a numeral for *3’ might be specific to
goats, or grain), and only gradually isolate quantitative in-
formation (i.e. fully general, abstract numerals). Humans’
strong, shared inductive biases for efficient combinatorial
systems and economy of expression frequently produce non-
iconic shorthands that map to their meaning by conventions
shared by participants rather than by iconic resemblance.

Do communicative constraints also favor the adoption of
non-iconic representations in the domain of number? For
representing shapes, iconicity is often powerful and succinct:
the meaning of an image that looks like its referent can be
discerned immediately due to low-level perceptual similar-
ity (e.g. a photo of a famous person). By some accounts,
numerosity is also a low-level, independent primary visual
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Figure 1: A. In each type of game (number or shape), the sketcher produced a symbol to convey the meaning of the target image
(highlighted in yellow) to the viewer, who could see the same sets of animals but not the identity of the target. The sets varied
in the type of animal they consisted of (in shape games), or the quantity of that animal they consisted of (in number games).
B. Sketches produced by participants in nine different number games (left) and nine different shape games (right) to convey
stimulus image “four owls” in the context of number and shape distractors, respectively.

property (Burr & Ross|, [2008), which may be especially well
represented by iconic symbols that exploit one-to-one corre-
spondence. However, while small sets can be readily repre-
sented by one-to-one correspondence, this strategy may be
less efficient for sets beyond the subitizing limit, as noise ac-
cumulates in keeping with Weber’s law. Thus, we might ex-
pect that, when seeking to accurately communicate the values
of large sets, individuals may create conventional, non-iconic,
representations as they do in other communicative contexts.

In the present study, we asked whether the above trade-
offs between iconicity and social convention might also ex-
plain the forms that numeral systems have taken historically,
by asking what forms first emerge in real-time communica-
tive settings. To explore this, we first constructed a dyadic
communication game to elicit spontaneous graphical repre-
sentations of numerical or shape information. Having elicited
these graphical representations under moderate time pressure,
we then asked naive human recognizers to recover the nu-
merical or shape meaning of those representations, in or-
der to understand whether those representations were iconic
(and therefore interpretable to naive outsiders) or conven-
tional (and therefore not interpretable to naive outsiders). We
also fed the image representations into a convolutional neural
network trained on naturalistic image data, and gave the same
recognition task to a linear classifier trained on those neural-
network encodings, in order to see if a low-level measure of
perceptual similarity was responsible for observed iconicity
in the numeral or shape representations.

What Numerals do People Improvise?

In Experiment I, we elicited ad-hoc numerals from people by
putting them in situations where the encoding of numerical
information was task relevant. We then compared the sym-
bols produced by this *number group’ with symbols produced
by a ’shape group’, another group for whom shape - not nu-
merical - information was task relevant.

Methods

Participants We originally recruited 134 participants from
Amazon Mechanical Turk (AMT), paired into 67 games. In
each game, one participant was assigned the sketcher role
and the other the viewer role, and these role assignments re-
mained the same throughout the experiment. Six games were
excluded according to our preregistered criteria: four did not
meet the performance threshold of 50% accuracy, while two
others included pre-existing symbols (words in the form of
text). This left 61 games for analysis, including 122 partici-
pants, of whom 115 completed our optional demographic sur-
vey (53 female). Each game was either a number game (32
games) or shape game (29 games). All participants provided
informed consent as per the IRB.

Stimuli Each stimulus consisted of a set of identical black
animal silhouettes on a white, square background (see Fig-
ure [T} panel A). Features that varied between stimuli were
cardinality (how many of the animal there was in the set) and
shape (what kind of animal the set consisted of). A stimu-
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Figure 2: A. Accuracy in the production task for each condition was 92%; individual participant accuracy scores are indicated as
dots, with 95% confidence intervals in black. B. The number of strokes used in each sketch correlated much more strongly with
cardinality of the stimulus in the number condition than in the shape condition. C. Human recognizer accuracy for labelling
sketches produced in the number condition (blue) and shape condition (magenta) with shape (left) or number (right) labels

(chance in dotted lines & 95% CI in black).

lus might therefore contain three bears, five deer, five rabbits,
etc. There were four possible animals (bears, deer, owls, &
rabbits) and cardinalities ranging from 1-8, for a total of 32
unique stimuli. The animal silhouettes were scattered in a
random spatial arrangement on the white background, and ev-
ery time a stimulus was displayed, one of 100 randomly gen-
erated versions was selected. To discourage reliance on spa-
tial information, participants were informed that they would
see a different spatial distribution from their partner.

Procedure Every game consisted of 32 trials, in which a
sketcher had to make symbols that were interpreted by a
viewer. In each trial, both participants were shown the same
four sets of animals as each other. From those four stim-
uli, one target was highlighted to the sketcher among three
distractors. The job of the sketcher was to disambiguate the
target to the viewer by means of a 500x500px sketchpad on
which they could draw with their computer cursor. After the
sketcher created and submitted their sketch, the viewer saw
the sketch and had to guess the identity of the target. This
whole process (sketching + guessing) was constrained to 30
seconds per trial, with a progress bar at the top showing both
participants how much time remained. At the end of each
trial, both participants were shown the identity of the target
and the viewer’s guess. Because there were 32 trials total per
game, each unique stimulus (combination of one of the four
animals with one of the eight cardinalities) served as the tar-
get exactly once. The 32 trials were divided into four blocks
of eight, during which each cardinality and each animal ap-
peared. In this way, we could probe whether representations
of each cardinality and each animal changed over time. This
also allowed us to create a dataset from each game in which
each of the 32 unique stimuli were represented once, enabling
easy comparisons based on unique stimuli.

Results

Information is effectively encoded To estimate the factors
influencing task accuracy, we constructed a binomial linear
mixed-effects model with fixed effects as follows: the shape
of the animal in the target (bear, deer, owl, rabbit), cardinal-
ity of the target (1-8), condition of the game in which the
sketch was produced (shape or number), and block of trials
(32 trials / 8 trials per block = 4 blocks), as well as random in-
tercepts for each participant. Through multiple BIC compar-
isons we found that the best model to predict accuracy did not
include any interaction terms. We first asked whether view-
ers’ accuracy in the number condition was different from our
baseline shape condition. Overall accuracy was quite high
(92%), and it was not significantly different between condi-
tions (b=-0.221, z=-0.623, p=.534), showing that people can
successfully distill shape or numerical information when it is
relevant in the communicative context (Figure [2, panel A).
Regardless of condition, accuracy improved over the the four
blocks of trials, indicating that participants did not immedi-
ately plateau to their maximum accuracy (b=0.494, z=5.745,
p<.001). We also asked whether accuracy was sensitive to
the dimensions of variation in the stimuli: cardinality and
shape. There were modest differences in accuracy between
shape categories, as revealed by nested model comparison
(x%3)=9.545, p=0.023). By contrast, cardinality was a strong

predictor of accuracy (X%1)=39.227, p<.001). Higher cardi-
nality was anti-correlated with accuracy (b=-0.252, z=-6.001,
p<.001), showing that larger cardinalities were harder for
participants to encode and interpret. This may be driven by
the perceptual difficulty of number discrimination as cardi-
nalities exceed the subitizing limit.

Strokes are used in 1-to-1 correspondence with numerical
meaning We then examined the number of strokes used per
sketch. In aggregate, this measure did not differ between the



two conditions; however, accounting for the random effects
of participant ID, shape games used more strokes than num-
ber games (b=1.688, r=3.103, p=0.003). Participants used
fewer strokes with each block of trials (b=-0.553, r=-11.029,
p<.001), perhaps as the result of converging on more effi-
cient representations. Importantly, there was both a main ef-
fect of stimulus cardinality on the number of strokes used
in a sketch (b=1.0287, 1=15.782, p<.001), and an interac-
tion between cardinality and game condition whereby stroke
counts in number games had a much stronger correlation with
stimulus cardinality than in shape games (b=0.734, t=7.767,
p<.001) (see Figure 2] panel B). This suggests that sketchers
relied heavily on a 1-to-1 matching strategy in the creation of
their numerals, to a degree that shape-game sketchers did not
(for intuition, see sample sketches in Figure[I] panel B)).

Sketches become more efficient over time Both the
amount of time and ’ink’ taken to draw each sketch were
greater for the shape condition than the number condition
(time: b=5.45, t=6.741, p<.001; ’ink’: b=0.0336, r=8.98,
p<.001). This may imply that the shape stimuli used in our
study were slightly more difficult to draw and less efficient
than the set of cardinalities. There was also a negative effect
of trial block number on the time it took to draw (b=-1.369,
1=-23.051, p<.001), and a significant but small effect on the
total amount of "ink’ used (b=-0.0015, r=-4.742, p<.001), in-
dicating that participants became more efficient with practice.

How Iconic are Improvised Numerals?

Having elicited improvised numerals, we asked in a follow-up
experiment to what extent these numerals would be intelligi-
ble to observers who were not part of the original commu-
nicative paradigm. If they were, this would indicate that the
symbols were iconic; otherwise, we would infer the symbols
were formed using non-iconic conventions. Also, to explore
the visual processing mechanisms that support the production
and recognition of such symbols, we sought to test how well a
modern computer vision algorithm that had already achieved
high accuracy on other visual recognition tasks (though not
number recognition) would generalize to the set of symbols
that participants had produced.

Methods

Participants We recruited a total of 112 recognizers from
Amazon Mechanical Turk. Six recognizers were excluded ac-
cording to preregistered criterion of missing any one of four
catch trials, and nine further participants were excluded for
having participated in the production task, leaving 99 recog-
nizers of whom 95 completed our optional demographic sur-
vey (39 female; Mg, = 39.02 years, SDg, = 11.40 years, ).
All participants provided informed consent as per the IRB.

Procedure Recognizers were divided into two groups: a
number group, in which participants assigned numerical la-
bels to sketches, and a shape group, in which participants as-
signed animal labels to sketches. Each recognizer saw exactly
one randomly selected sketch from each original production

game, of which there were 61. This meant that each recog-
nizer (both 'number-’ and ’shape-recognizers’) provided la-
bels both for sketches produced in number games and for
sketches produced in shape games. 4 catch trials were in-
serted at regular intervals to exclude recognizers who were
not paying attention, for a total of 65 trials. In each trial, the
recognizer was presented with a sketch, and also presented
with a panel of labelling buttons. For the number group,
there were 8 buttons, showing the numbers 1-8. For the shape
group, there were 4 buttons, showing the four animal silhou-
ettes used for the original production task stimuli. Recog-
nizers were asked to select the label that best 'matched’ the
sketch. After selecting their response, no feedback was given.

Model-Based Analysis of Sketch Recognizability To sup-
plement the decisions of human recognizers, we also asked
whether the representations encoded by a deep convolu-
tional neural network trained on challenging object recog-
nition tasks would be sufficient to emulate human perfor-
mance. Following prior work employing deep convolutional
neural networks pre-trained on challenging visual recogni-
tion tasks (Deng et al.l 2009) to encode the visual features of
hand-drawn images (Fan, Hawkins, Wu, & Goodman, |[2020),
we used VGG-19 (Simonyan & Zisserman, [2014) to extract
high-level feature-vector representations for each symbol.
We trained two logistic-regression classifiers, one predicting
number (i.e., 1-8) and the second predicting shape identity
from these feature vectors. Both classifiers were trained and
evaluated in a 5-fold cross-validated manner using the same
splits for both the number and shape tasks, yielding a pattern
of correct classifications and confusions.

Results

Relevant information is encoded iconically To measure
the degree to which information about shape or number
was encoded in a way that was transparent to other peo-
ple, we analyzed both human and model recognition per-
formance. Specifically, we separately fit human and model
recognition accuracy using mixed-effects logistic regression.
To identify the factors that were most important for ex-
plaining recognition accuracy, we formally compared mod-
els containing different subsets of predictors as fixed ef-
fects, and used BIC (Bayesian information criterion) to iden-
tify the best-performing one. The resulting model predict-
ing human recognition included: production-game condi-
tion (i.e., number or shape), recognition-task condition (i.e.,
number or shape), production-game block number (i.e., 1-4),
and the interaction between production-game condition and
recognition-task condition, with random intercepts for each
recognizer, each production game, and for each stimulus car-
dinality and shape. Recognition accuracy was slightly lower
for sketches produced in shape games than those from num-
ber games (b=-2.365, z=-23.775, p<.001), and for recogni-
tion participants trying to assign shape labels (b=-1.738, z=-
20.143, p<.001). Crucially, however this analysis also re-
vealed a reliable interaction between communication-game



condition and recognition-task condition (b=4.368, z=50.565,
p<.001; Figure 2] panel C), indicating that recognition par-
ticipants were better able to correctly identify the number
conveyed by sketches from number games than from shape
ones (66.9%, 95CI=[65.3%,68.4%]), and to correctly iden-
tify the shape conveyed by sketches from shape games than
number ones (71.8%, 95CI=[70.2%,73.3%]). Furthermore,
recognition of the feature not elicited in the original produc-
tion game was close to chance-level performance (number la-
bels from shape games 20.8%, 95CI=[19.4%,22.2%]; shape
labels from number games 28.0%, 95CI=[26.6%,29.5%]).
This suggests that sketchers were selectively prioritizing task-
relevant information in their sketches (see Figure [3] for full
accuracy/confusion matrices of human recognizers). Like the
human recognition participants, the computer-vision model
performed better at assigning labels that were congruent with
the task-relevant information in the production condition, as
indicated by an interaction between production condition and
recognition condition (b=3.338, z=20.984, p<.001). How-
ever, while its performance classifying shape from shape-
game sketches (76.5%, 95CI=[73.6%,79.4%]) was compa-
rable to human recognizers’ performance and its failures
were at chance (shape labels from number games 25.5%,
95CI=[23.3%,27.7%]; number labels from shape games
14.3%, 95CI=[11.6%,17.1%])), the linear classifier was much
worse at discriminating numerical information from number-
game sketches (31.7%, 95CI1=[30.3%,33.2%]) than were hu-
man recognizers. Taken together, these results are consistent
with prior work that has shown that similar neural network
architectures, previously trained to categorize objects in pho-
tos, display a robust ability to generalize to object categoriza-
tion in sketches (Fan, Yamins, & Turk-Brownel [2018). How-
ever, our results also suggest the possibility that the ability
to acquire other abstract visual concepts, such as exact cardi-
nality, may not readily emerge under the same architectural
and functional constraints, and thus that other computational
ingredients may be necessary to support the full breadth of
human-like image and symbol understanding.

Discussion

In this study, we began an exploration of how communica-
tive goals and perceptual constraints would affect how peo-
ple symbolically represent number. We found that numerical
and shape information were both encoded iconically by com-
municators when it was task relevant, as evidenced by the
high performance of naive recognizers. Furthermore, task-
relevant information was encoded more iconically than simi-
larly salient, but non-task-relevant information, as evidenced
by the relative success of naive recognizers in recovering
task-relevant information and poor performance in recover-
ing non-task-relevant information. While this shows, unsur-
prisingly, that people are sensitive to the number/shape dis-
tinction, more interesting is that it also shows that they create
symbols that are restricted to conveying number, rather than
also incorporating object information (as happens in many
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Figure 3: Confusion matrices from decoding. Human rec-
ognizers were able to consistently decode sketches produced
in conditions congruent to their own (left column of panels),
showing effective distillation of the relevant dimension of in-
formation by sketchers in the production task. They were
much less effective at decoding information from conditions
incongruent to their own (right column of panels).

early numeral systems, as well as linguistic number classi-
fiers). This is concordant with previous findings in the field
showing that people can (and do) isolate functionally relevant
features in communicative signals (Winters et al., 2015]).

In addition to iconicity and communicative efficacy, we
also wondered what specific strategies people would use to
represent numerical information. It was possible that peo-
ple would be extremely conservative, depicting the stimulus
images literally. It was also possible that people would au-
tomatically implement an efficient, abstract numerical base
system (such as Roman ’V’). This seemed especially likely
given the perceptual constraints in the upper range of the car-
dinalities we tested, and the fact that our participants were
certain to already be familiar with the concept of non-iconic
numerical symbols. However in our study, somewhat sur-
prisingly, the numerical representations that were elicited re-
lied almost entirely on 1-to-1 iconicity. These representations
were not completely conservative, in that they shed extrane-
ous information about shape, and not totally efficient, in that
they continued to use 1-to-1 matching for large, perceptually
challenging quantities.

This preliminary study introduced a novel approach to in-
vestigating how humans create conventions for representing
symbolic number. However, the procedure we used has sev-
eral limitations. One is the small range of cardinalities and



nonrestrictive constraints on numeral production. Currently,
we are using larger cardinalities to observe whether base-
systems emerge when there is sufficient perceptual noise in
numeral representations, and when there are enough costs
(limited time and ’ink’ resources) to preserving 1-to-1 iconic
conventions. Another limitation is that, as they were recruited
from Amazon Mechanical Turk, participants can be assumed
to be familiar with symbolic number already. In the future,
we therefore plan to conduct similar, simplified studies with
both pre-numerate child populations, and non-numerate adult
populations. Such experiments will be especially informa-
tive in light of recent work that finds 1-to-1 matching to be
both culturally non-universal and developmentally challeng-
ing (Ferrigno, Jara-Ettinger, Piantadosi, & Cantlon, 2017
Schneider & Barner, [2020). These findings suggest that the
1-to-1 matching strategy used by most participants in the
present study may not be intuitive to all populations. Finally,
our paradigm was not a repeated reference game and featured
only a small number of trials (32 trials). By extending the
amount of time that participants spend communicating about
the same stimuli, we expect that future studies may be more
likely to elicit measurable change in the form of representa-
tions over the course of the experiment.

OSF pre-registration:
https://osf.i0/y2f3e/

All code and materials available at:
https://github.com/cogtoolslab/
iterated_number_cogsci2021
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