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Abstract

To what extent do visual concepts of dogs, cars, and clocks change across childhood?

We hypothesized that as children progressively learn which features best distinguish

visual concepts from one another, they also improve their ability to connect this

knowledge with external representations. To examine this possibility, we investigated

developmental changes in children’s ability to produce and recognize drawings of

common object categories. First, we recruited children aged 2-10 years to produce

drawings of 48 categories via a free-standing kiosk in a children’s museum, and we

measured how recognizable these >37K drawings were using a deep convolutional

neural network model of object recognition. Second, we recruited other children across

the same age range to identify the drawn category in a subset of these drawings via

"guessing games" at the same kiosk. We found consistent developmental gains in both

children’s ability to include diagnostic visual features in their drawings and in children’s

ability to use these features when recognizing other children’s drawings. Our results

suggest that children’s ability to connect internal and external representations of visual

concepts improves gradually across childhood and imply that developmental trajectories

of visual concept learning may be more protracted than previously thought.
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Parallel developmental changes in children’s drawing and recognition of visual concepts

Introduction

What makes a rabbit look like a rabbit – or a rabbit look different from a cat? As

adults, these visual concepts are seamlessly integrated into our experience of the visual

world. Toiling in the background, our visual system connects incoming patterns of light

with knowledge about what things look like, rapidly inferring the category membership

of the objects we see. This flexible, generative visual knowledge also allows us to

conceive of and create innumerable new exemplars of visual concepts, communicating

about the contents of our mind’s eye (Gregory, 1973).

A common view is that visual concepts mature relatively early in life. Supporting

this view, even very young infants can extract perceptual commonalities (Quinn &

Eimas, 1996) that can distinguish between basic-level categories (e.g., dog vs. cat).

Infants also show a remarkable ability to generalize between different kinds of visual

representations: 5-month-olds recognize the correspondence between line drawings and

photographs of faces (DeLoache, Strauss, & Maynard, 1979), and when 18-month-olds

are taught the name of a novel object depicted in a line drawing, they extend this label

to its real-life counterpart (Allen Preissler & Carey, 2004). As young children learn to

pair labels (e.g., “rabbit”) with their visual experience of objects belonging to different

categories — as stylized depictions, toys, or real-life exemplars — this active process

may create new features relevant for distinguishing visual categories from one another

(for review, see Schyns, Goldstone, & Thibaut, 1998). And by their second birthday,

children extend visual concepts appropriately after experiencing one or few exemplars of

a novel category (i.e., “one-shot” learning) (Carey & Bartlett, 1978; Pereira & Smith,

2009; Soja, Carey, & Spelke, 1991) and identify abstract exemplars as belonging to

those categories (Pereira & Smith, 2009).

However, mounting evidence suggests that children’s visual recognition abilities

have a relatively extended developmental trajectory throughout middle childhood (for

reviews, see Juttner, Wakui, Petters, & Davidoff, 2016; Nishimura, Scherf, & Behrmann,

2009). For example, children become steadily better at discriminating between
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perceptually similar exemplars of scenes, objects, bodies, and faces from 5-10 years of

age (Weigelt et al., 2014) and increasingly skilled at recognizing objects presented in

unusual poses or 3D rotations, reaching adult-like levels only in adolescence (Bova et

al., 2007; Dekker, Mareschal, Sereno, & Johnson, 2011; Nishimura, Scherf, Zachariou,

Tarr, & Behrmann, 2015). These improvements may partly be because children

increasingly attend to the relationship between object parts and features as they

approach adolescence (Juttner, Muller, & Rentschler, 2006; Juttner et al., 2016; Mash,

2006). In turn, improvements in children’s recognition abilities are reflected in changes

in how visual cortex encodes different objects and scenes (Balas & Saville, 2020; Cohen

et al., 2019; Dekker et al., 2011; Gomez, Natu, Jeska, Barnett, & Grill-Spector, 2018;

Kersey, Clark, Lussier, Mahon, & Cantlon, 2015; Nishimura et al., 2015). For example,

children’s ability to discriminate between similar faces is correlated with the sensitivity

of corresponding face-selective regions to these particular faces (Natu et al., 2016).

Examination of children’s drawings also suggests that visual concepts may change

throughout childhood (Fury, Carlson, & Sroufe, 1997; Karmiloff-Smith, 1990; Kellogg,

1969; Piaget, 1929). For example, there appear to be dramatic changes in how children

encode diagnostic visual information in their drawings across age; younger children (4-5

years) tend to include fewer cues in their drawings to differentiate between target

concepts (e.g., adult vs. child) than older children, who enrich their drawings with more

diagnostic part (Sitton & Light, 1992) and relational (Light & Simmons, 1983)

information. Furthermore, prior work suggests that children’s drawings reflect what

they know about objects – and that new experience with these objects in an

experimental session can change what children draw. For example, even when drawing

from observation, children tend to include features that are not visible from their

vantage point, yet are diagnostic of category membership (e.g., a handle on a mug)

(Barrett & Light, 1976; Bremner & Moore, 1984), and either haptic or visual experience

with an object tends to exaggerate this effect (Bremner & Moore, 1984).

Here, we test a specific hypothesis about the nature of these changes in visual

concepts: the idea that children’s visual concepts change as they gradually learn to
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Figure 1 . Kiosk setup where children participated and illustration of the tracing trials,

drawing station, and guessing game. (Bottom) Example drawings from several

categories: redder drawings contain more diagnostic visual features (i.e. classifier

evidence, see Methods).

identify which features are most diagnostic of each concept. We further hypothesize

that changes in how well children can recognize visual concepts are accompanied by

parallel changes in how well children can generate recognizable visual representations of

them by drawing. To test these predictions, we examine changes in the features that

children produce when drawing and in the features that they rely on when recognizing

each other’s drawings. Our prediction is that children become more sensitive to the

distinctive features of visual concepts in both tasks across development.

Alternatively, children’s internal visual concepts may not change substantially

over childhood. On this account, improvements in children’s ability to draw various

concepts may solely reflect improvements in their general ability to plan and control
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their motor movements (Freeman, 1987; Rehrig & Stromswold, 2018), or their specific

experiences drawing particular concepts (Cohn, 2012; Willats, 2006). But on this

alternative account, children should not improve in their ability to recognize line

drawings of visual concepts, in keeping with accounts of early pictorial competence.

Though the hypothesis that children’s visual knowledge has a protracted

developmental trajectory has been articulated frequently (e.g. Bova et al., 2007; Sitton

& Light, 1992; Sloutsky & Fisher, 2011), testing it has previously been impossible.

Until recently there has been no agreed upon or generalizable way to quantify the

distinctive, high-level visual features in a given image. In prior work, scientists had to

intuit what these distinctive visual features could be (e.g., handles for mugs) and then

optimize a small set of stimuli and tasks to detect hypothesized changes (e.g. Barrett &

Light, 1976; Goodenough, 1963), relying heavily on manual annotations. These

methodological obstacles limited the breadth of their conclusions.

To overcome these challenges, here we collected a large, digital sample of

children’s drawings over childhood for many different categories. We also capitalized on

recent improvements in computer vision to analyze this dataset. Recent work has now

validated the use of deep convolutional neural network (DCNN) models as a general

basis for measuring the high-level visual information that drives recognition in images –

including sparse drawings of objects (Fan, Yamins, & Turk-Browne, 2018; Long, Fan, &

Frank, 2018). Activation patterns in higher layers of these models predict adult

perceptual judgments of shape similarity (Kubilius, Bracci, & Op de Beeck, 2016),

neural population responses to categories throughout object-selective cortex (Yamins et

al., 2014), and similarity relationships between sparse drawings and photographs of

categories (Fan et al., 2018). Furthermore, unlike human adults, these models have no

knowledge of drawing conventions (i.e. how one might typically draw a bird or a fish)

and do not incorporate abstract semantic features into their similarity judgements

(Hebart, Zheng, Pereira, & Baker, 2020). This new tool makes it possible to assess

developmental changes in the visual features of children’s drawings. We use these

methodological advances to quantify changes in how children produce and recognize
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drawings of object categories over development, testing the hypothesis that children’s

visual concepts change over childhood.

Results

Development of drawing production
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Figure 2 . (A). Each dot represents the proportion of drawings that were correctly

classified in a given category; chance line represents 1/48 (number of categories in the

dataset). (B). Log odds probabilities (i.e. classifier evidence) for a subset of correctly

recognized drawings, binned by the age group of the child who produced the drawings.

Categories are ordered by average log odds probabilities for each category in descending

order. Error bars represent bootstrapped 95% confidence intervals in both plots.

A free-standing kiosk designed to be navigable by children was installed at a local

science museum (see Figure 1A). Children used a touch-screen tablet to produce their

drawings. As children’s visuomotor abilities may limit their ability to include the

relevant visual features in their drawings (Freeman, 1987; Rehrig & Stromswold, 2018),

we also included shape tracing trials to measure children’s tracing skills (see Figure 1B).

After completing these tracing trails, children were prompted to draw different object

categories via verbal prompts. These categories were selected to include both animals

and inanimate objects as well as categories that are both commonly (e.g., cup, face,
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cat) and rarely drawn (e.g., octopus, piano, camel) by children. The final, filtered

dataset contained 37,770 drawings of 48 categories from N=8084 children who were on

average 5.4 years of age (range 2–10 years old; see Methods for more details).

To examine changes in the children’s drawings across development, we analyzed

the degree to which high-level visual features of each drawing could be used to decode

the category that children were intending to draw (e.g., dog). We obtained these

features using a deep convolutional neural network pre-trained on Imagenet

classification with a VGG-19 architecture (Simonyan & Zisserman, 2014). Activations

for each sketch were taken from the second-to-last layer of this model as prior work has

shown that these activations correspond to the visual features that enable basic-level

recognition (e.g., cat vs. dog) in both sketches and photographs (Fan et al., 2018;

Yamins et al., 2014). These features were used to train logistic-regression classifiers to

predict which of the 48 categories children were asked to draw (e.g., couch, chair) for

sets of held-out drawings (see Methods). For every drawing, this procedure thus yielded

(1) a binary classification score, indicating whether a given drawing contained the visual

features that enabled basic-level recognition, and (2) a probability score for each of the

48 categories, capturing the degree to which a given drawing contained the visual

features relevant to that category.

Drawings become more recognizable across childhood. Overall, we found

that drawing classification accuracy increased steadily with children’s age (see Figure

2A, Table 1), validating the basic expectation that older children’s drawings contain

visual features that make them more recognizable. One potential explanation for this

increase it is driven by specific categories that children tend to draw most frequently

(e.g., trees, people, dogs). This account predicts that these frequently drawn categories

would show the strongest developmental trends. To test this account, we estimated how

frequently children drew each of the categories in the dataset by asking parents to

report how often their child tends to draw each category (N=50 parents of children

aged 3-10 years, Methods). We found little evidence that drawings of more frequently

drawn categories were more recognizable or showed stronger developmental trends;
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there was neither a main effect of drawing frequency on classification accuracy nor an

interaction with age in a generalized linear mixed effect model (see Table 1). In fact,

many infrequently drawn categories (e.g. mushroom) had relatively high classification

accuracy while some frequently drawn categories (e.g. dog) had relatively low

classification accuracy and were more likely to be confused with other similar categories

(e.g., other animals) (see Figure 2B).

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.015 0.199 -5.098 0.000

Age (in years) 0.238 0.020 11.905 0.000

Est. drawing frequency -0.132 0.199 -0.662 0.508

Age*Drawing frequency 0.002 0.017 0.117 0.907

Tracing score 0.262 0.020 12.868 0.000

Time spent drawing 0.068 0.021 3.219 0.001

’Ink’ used (mean intensity) -0.071 0.021 -3.412 0.001

Number of strokes 0.016 0.018 0.886 0.376
Table 1

Model coefficients of a GLMM predicting the recognizability of each drawing (i.e. binary

classification scores), including random intercepts for each category and participant.

Recognizable drawings contain more diagnostic features across

development. The above results could reflect gradual improvements to children’s

ability to include diagnostic features of each category in their drawings. However, they

are also consistent with an alternative account where younger children have similar

overall competence in producing recognizable drawings when they are engaged with the

task, but are less likely to stay on-task than older children and thus more often produce

unrecognizable drawings. To tease these two possibilities apart, we compared how much

diagnostic visual information was contained in drawings that were correctly classified.

For example, among drawings that were correctly recognized as clocks, did older

children also include features that more clearly set them apart from other similar
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categories – for example, watches? Insofar as age-related improvements in classification

accuracy primarily reflect a decrease in the proportion of unrecognizable drawings –

rather than an increase in the quality of their recognizable drawings – we should expect

younger and older children’s recognizable drawings to contain similar amounts of

diagnostic visual information.

Even for drawings that were correctly classified (33% of the balanced subset of

drawings, N=7,468) there was still a reliable increase in the amount of diagnostic

information they contained across age, as measured by the log-odds probability assigned

by the logistic-regression classifier to the target category (see Methods, B = 0.102, SE =

0.016, df = 3297.23, t = 6.524, P < 0.001). Thus, this secondary analysis provides

additional support for the account that the age-related improvements reflect gradual

changes in children’s ability to include diagnostic visual features in their drawings (see

Figure 2B).

Rich information in misclassified drawings. Children’s misclassified

drawings were not merely incoherent scribbles; they still contained valuable visual

information about the category they were intending to draw. Figure 3A shows the

classifier probabilities assigned to all categories for drawings that were incorrectly

recognized at the basic-level. These systematic model confusions highlight the structure

in children’s unrecognizable drawings: for example, drawings of an octopus were often

misclassified as a spider, and drawings of a book were often confused with drawings of a

TV.

Indeed, prior work has found that simple visual features can convey semantic

information. For example, adults can identify the animacy and real-world object size of

unrecognizable images by inferring that roundish things are more likely to be animals

and less likely to be large, inanimate objects (e.g., buildings) (Long, Konkle, Cohen, &

Alvarez, 2016; Long, Störmer, & Alvarez, 2017; Long, Yu, & Konkle, 2018). We thus

also examined whether misclassified drawings contained information about the animacy

and real-world size of the objects children were intending to draw. To do so, we

analyzed the misclassifications made by the logistic regressions and found that these
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misclassifications were highly informative with respect to the animacy of the intended

category for children of all ages (see Figure 3B). Similarly, we found that misclassified

drawings still contained information about the real-world size of the inanimate objects

children were trying to depict (see Figure 3C). Even when children were unable to

convey the basic-level category that they were intending to draw, their drawings still

contained rich information about the visual features of that category.
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Figure 3 . (A). Classifier probabilities for the subset of drawings that were misclassified.

The y-axis shows the category children were intending to draw; the x-axis shows all of

the categories in the dataset. Lighter values represent greater classifier probabilities

assigned to a given category (B,C). Proportion of misclassified drawings that contained

the correct animacy/object size information of the target category (relative to baseline).

Each dot represents the proportion of drawings in a given category that had correct

animacy/real-world size information relative to baseline at each age, respectively. Error

bars represent bootstrapped 95% confidence intervals.
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Relationship to visuomotor control. Finally, we anticipated that the

recognizability of children’s drawings would vary with their ability to control and plan

their motor movements. Children spend countless hours across childhood both learning

to write and practicing how to produce different shapes. Further, children’s engagement

with this drawing task could also reasonably vary as a function of age, with more skilled

children spending more time, ink, or strokes on their drawings. We thus measured the

amount of time and effort children put into their drawings, and we estimated children’s

visuomotor control via the simple shape tracing assessment task at the drawing kiosk.

Children were instructed to trace both a relatively easy shape (a square) as well as a

complex, novel shape that contained both curved and sharp segments (see Figure 1).

For each participant, we used their performance on these two tracing trials to derive

estimates of their tracing ability. Specifically, we obtained ratings of tracing accuracy

from independent adult judges for a subset of tracings and then used these ratings to

adapt an image registration algorithm (Sandkühler, Jud, Andermatt, & Cattin, 2018) to

predict tracing scores for held-out tracings produced by children (see Methods). We

found that tracing scores produced by the same participant were moderately correlated

(r=.60, p<.001, N=6,746), despite the irregular shape being notably harder to trace

than the square. Thus, despite the brevity of this tracing assessment, the resulting

measure had moderate reliability.

Individuals’ tracing abilities were good predictors of the recognizability of the

drawings they produced. However, we still observed a robust main effect of age even

when accounting for tracing abilities and other effort covariates (see Appendix Figure

B2, Table 1), including the amount of time children spent drawing, the number of

strokes in their drawings, and the amount of ‘ink’ that they used. Children’s ability to

control and plan their motor movements has a substantial effect on their ability to

produce recognizable drawings––but does not entirely account for the observed

developmental changes.
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Development of drawing recognition

Why might children include more diagnostic visual features in their drawings as

they grow older? One explanation for these developmental changes is that children

improve their ability to connect their internal and external representations of these

visual concepts as they acquire more knowledge about the visual distinctions between

different visual concepts. In other words, children might more clearly represent the

visual features that best distinguish between rabbits versus dogs. This account predicts

that older children should also be better able to exploit this diagnostic visual

information in drawings to recognize their intended meaning.

To test this idea, we installed a “guessing game” in the same kiosk at the local

science museum (see Figure 1, top right) where children guessed the category that an

earlier child’s drawing referred to. These drawings were randomly sampled from the

larger drawing dataset and varied in the amount of diagnostic visual information they

contained. This design choice allows us to examine how children’s visual recognition

abilities vary when drawings contain differing amounts of diagnostic visual features.

Our goal in designing the visual recognition task was for it to be challenging yet

not demand that children track a large number of comparisons. At the beginning of

each session, children completed four practice trials in which they were cued with a

photograph and asked to “tap the [vehicle/animal/object] that goes with the picture,”

choosing from an array of four photographs of different object categories (see Figure 1).

Children were then cued with drawings of these categories and responded using the

same photograph buttons; photograph matching trials were also interspersed

throughout the session as attention checks. We sequentially deployed four different

versions of this task, including a different set of four perceptually similar categories in

each (e.g., hat, bottle, cup, lamp). After exclusions, our dataset from this task included

1,789 children ages 3–10 years (see Methods).

Children became steadily better at identifying the category that a drawing

referred to (see Figure 4A). In contrast, performance on photograph matching trials was

relatively similar across ages. All included children scored >75% correct on photograph
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Figure 4 . A. Drawing recognition as a function of the age of the child who participated

in the guessing game; each dot represents data from one child who participated and is

scaled by the number of trials they completed. B. Drawing recognition data plotted

separately by the age of the child participating as a function of the amount of diagonstic

visual features in each drawing, operationalized as the the classifier evidence assigned to

each sketch relative to the distractor categories. Classifier evidence is binned into deciles

for visualization purposes. Error bars represent bootstrapped 95% confidence intervals.

trials and average accuracy in each group ranged from M=90-93% correct. Thus,

variation in drawing recognition accuracy is unlikely to be explained by generic

differences in motivation or task engagement.

To test the hypothesis that children’s drawing recognition ability reflects the

amount of diagnostic information in a given drawing, we evaluated whether drawings

with more diagnostic information were better recognized. For each drawing that

appeared in the guessing game, we fit a 4-way logistic regression classifier trained on the

drawings presented in each guessing game and measured diagnostic information as the

log-odds ratio between the intended category and the foil categories. That is, the

diagnostic information for a dog drawing was defined relative to its perceptual similarity

to the other choices in the recognition task (i.e., bird, fish, rabbit). We then fit a

generalized linear mixed effects predicting children’s recognition performance with

child’s age, this classifier evidence measure, and their interaction as fixed effects (see

Methods).
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Estimate Std. Error z value

(Intercept) 0.050 0.121 0.413

Classifier evidence 0.477 0.046 10.406

Recognizer Age 0.317 0.019 16.777

Classifier evidence*Recognizer Age 0.062 0.014 4.246
Table 2

Model coefficients of a GLMM predicting visual recognition performance as a function of

recognizer age and classifier evidence.

Older children were more accurate at recognizing drawings and, across all ages,

drawings with more diagnostic information were better recognized (see Table 2).

Consistent with our hypothesis, older children were better able to capitalize on graded

differences in the diagnostic visual information in drawings when recognizing them (see

Figure 4B), evidenced by an interaction between classifier evidence and recognizer age.

This result held when we restricted our analyses to a subset of children who performed

at ceiling on photograph matching trials (see Appendix Table B1). Thus, these results

support the hypothesis that children’s ability to use diagnostic visual features during

recognition changes across development.

General Discussion

To what extent do children’s visual concepts change across childhood? To

examine this question, we conducted a large-scale investigation of how children produce

and recognize a wide range of visual concepts across development (2-10 years of age).

We found robust improvements in children’s ability to include diagnostic visual features

in their drawings. We also found gradual changes in children’s ability to capitalize on

these same diagnostic features when recognizing drawings of visual concepts. Together,

these results suggest parallel developmental changes in both visual production and

recognition of drawings across childhood. Children may undergo a more protracted

developmental trajectory for the development of visual concepts than previously



DEVELOPMENT OF VISUAL PRODUCTION AND RECOGNITION 16

thought, in tandem with refinements in their perceptual abilities (Bova et al., 2007;

Natu et al., 2016) and their semantic knowledge about object categories (Tversky, 1985;

Vales, Stevens, & Fisher, 2020).

More broadly, the present work highlights how larger-scale datasets of naturalistic

behaviors can contribute to theoretical debates in developmental science. By collecting

rich data from many participants over a large developmental age range, we can more

precisely estimate graded changes in children’s abilities and the degree to which these

trajectories vary between participants and across categories. Using this approach, we

find evidence for continuous and variable changes in children’s visual concepts across

development – rather than a point at which children become "adult-like". We believe

that this work paints a more accurate picture of developmental change and opens up

new avenues for investigating the various factors that shape visual concepts throughout

development.

Several learning mechanisms are consistent with the developmental changes we

observed. One possibility is that children are becoming better visual communicators as

they learn which features are most effective at conveying category membership through

the process of producing drawings. In turn, this process of using drawings and other

visual modalities to communicate various visual concepts may have downstream effects

on children’s ability to recognize drawings of them. Such a mechanism would be

consistent with prior work suggesting that learning to produce letters by hand can

support subsequent letter recognition (James, 2017; Longcamp, Zerbato-Poudou, &

Velay, 2005), with recent findings pointing towards the variability of visual forms seen

while learning to write as a key factor (Li & James, 2016). Training studies with adults

also provide support for a link between visual production and recognition: practicing

drawing categories that are perceptually similar to one another (i.e. beds vs chairs) can

lead to refinements in the ability to distinguish between them (Fan et al., 2020) as well

as to more discriminable representations in visual cortex (Fan et al., 2020). Thus, the

process of iteratively producing and recognizing drawings of visual concepts could cause

these parallel developmental changes in both domains. Contra a strong version of this
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account, however, we did not find strong effects of drawing practice at the category-level

in the present data: for example, camels were among the best recognized categories and

estimated (by parents) to be among the least practiced by children.

A second possibility is that children are explicitly learning the diagnostic features

of categories as they enrich their semantic knowledge. For example, children may learn

that certain visual features are functional in nature: camels have humps to store water,

clocks have numbers to tell time, and whales spout water because they need to breathe.

As a result, children may come to more clearly represent which visual features are

diagnostic of different categories and why. In turn, this semantic knowledge could be

filtered into children’s visual concepts and thus accessed both when children draw an

object and when they recognize it. This possibility aligns with a wealth of evidence

suggesting that continual learning about different categories throughout the early school

years shapes children’s categorization abilities. For example, children change in how

they think about the diagnosticity of different semantic properties across development:

in early childhood, the fastest cheetah – that is, the exemplar with the most extreme

value on some property – tends to be seen as the best and the most representative

cheetah (Foster-Hanson & Rhodes, 2019). At the same time, taxonomic groupings

become increasingly important both in children’s explicit conceptual judgements

(Tversky, 1985) and when children spontaneously arrange different visual concepts (e.g.,

wild vs. farm animals, Vales et al., 2020). Thus, children’s evolving semantic knowledge

could shape the visual features children use both when producing and recognizing

different visual concepts.

A third possibility, not mutually exclusive with the other two, is that children are

implicitly learning the diagnostic features of these visual concepts through the process

of visual categorization itself: through repetitively viewing and categorizing depictions,

real-life examples, and photographs of these different categories. Indeed, the deep

neural network used here to categorize drawings was trained solely on photographs of

object categories – it has never seen a drawing, had visuomotor experience drawing, or

learned the semantic properties of these categories. Thus in principle it is possible that
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children could be learning the diagnostic features of these visual concepts without

substantial involvement from other cognitive or sensorimotor systems.

There are various limitations to the generalizability of these findings that future

work could address. First, while these datasets are large and sample heterogeneous

populations, all drawings and recognition behaviors were collected at a single

geographical location, limiting the generalizability of these results to children from

other cultural or socioeconomic backgrounds. Second, while we imposed strong filtering

requirements, we were not present while the children were drawing or guessing and thus

cannot be sure that we eliminated all sources of noise or interference. Many sources of

additional interference would only generate noise in our data, though, rather than

creating specific age-related trends. Third, since these datasets are cross-sectional, they

cannot address whether changes in visual production precede changes in visual

recognition or vice versa.

Ultimately, these results call for systematic, experimental investigations into the

kinds of experience – including visuomotor practice, semantic enrichment, and visual

exposure – that may influence visual production and recognition in children. We

propose that a full understanding of how children produce and recognize drawings of

common object categories will allow a unique and novel perspective on the both the

development and the nature of visual concepts: the representations that allow us to

easily derive meaning from what we see.

Methods & Materials

Drawing Station Details

While the interface was designed to be navigable by children, the first page of the

drawing station showed a short consent form and asked parents to enter their child’s age

in years. Afterwards, video prompts of an experimenter guided the child through the

rest of the experiment; an initial video stated that this game was "only for one person

at a time" and asked children to "draw by themselves." Every session at the drawing

station started with tracing trials before moving on to the category prompts (“What
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about a [couch]? Can you draw a [couch]?”). Children could stop the experiment at any

time by pressing a stop button; each trial ended after 30 seconds or after the child

pressed the "next" button. Six different sets of eight category prompts rotated at the

station, yielding drawings from a total of 48 categories (Appendix Figure B1; airplane,

apple, bear, bed, bee, bike, bird, boat, book, bottle, bowl, cactus, camel, car, cat, chair,

clock, couch, cow, cup, dog, elephant, face, fish, frog, hand, hat, horse, house, ice cream,

key, lamp, mushroom, octopus, person, phone, piano, rabbit, scissors, sheep, snail,

spider, tiger, train, tree, TV, watch, whale).

Drawing Dataset Filtering & Descriptives

Given that we could not easily monitor all environmental variables at the drawing

station that could impact task engagement (e.g., ambient noise, distraction from other

museum visitors), we anticipated the need to develop robust and consistent procedures

for data quality assurance. We thus adopted strict screening procedures to ensure that

any age-related trends we observed were not due to differences in task compliance

across age. Early on, we noticed an unusual degree of sophistication in 2-year-old

participants’ drawings and suspected that adult caregivers accompanying these children

may not have complied with task instructions to let children draw on their own. Thus,

in subsequent versions of the drawing game, we surveyed participants to find out

whether another child or an adult had also drawn during the session; all drawings where

interference was reported were excluded from analyses. Out of 11797 subsequent

sessions at the station, 3094 filled out the survey, and 719 reported interference, 6.09%

of participants; these participants’ drawings were not rendered or included in analysis.

Raw drawing data of object categories were then screened for task compliance

using a combination of manual and automated procedures (i.e., excluding blank

drawings, pure scribbles, and drawings containing words). A first subset of drawings (N

= 15594 drawings) was filtered manually by one of the authors, resulting in N = 13205

drawings after exclusions (15.3% exclusion rate); subsequently, drawing filtering was

crowd sourced via Prolific. 390 participants first completed a practice round



DEVELOPMENT OF VISUAL PRODUCTION AND RECOGNITION 20

demonstrating valid and invalid drawings and then viewed 24 drawings from a intended

category at a time and selected the invalid drawings they judged to come from from

off-task participants. Participants were reminded that unrecognizable drawings were

still "valid" drawings, and could proceed to the next category only after selecting a

’catch’ invalid drawing. Each drawing in the dataset was viewed at least twice by two

different participants. To be conservative, any drawing that was marked as ‘invalid’ by

a participant was excluded from the dataset. These stringent filtering criteria resulted

in the exclusion of an additional 9897 drawings, leading to an overall exclusion rate of

24.57% of the drawings and a final set of 37770 drawings from 8084 sessions. In the

final dataset, there were more younger than older children, despite filtering; see

Appendix Table A1 for a complete summary.

Measuring Tracing Accuracy

We developed an automated procedure for evaluating how accurately participants

performed the tracing task that was validated against empirical judgments of tracing

quality. We decompose tracing accuracy into two components: a shape error component

and a spatial error component. Shape error reflects how closely the participant’s tracing

matched the contours of the target shape; the spatial error reflects how closely the

location, size, and orientation of the participant’s tracing matched the target shape.

To compute these error components, we applied an image registration algorithm,

AirLab Sandkühler et al. (2018), to align each tracing to the target shape, yielding an

affine transformation matrix that minimized the pixel-wise correlation distance between

the aligned tracing, T , and the target shape, S: LossNCC = −
∑

S·T −
∑

E(S)E(T )
N

∑
V ar(S)V ar(T ) , where

N is the number of pixels in both images.

The shape error was defined by the final correlation distance between the aligned

tracing and the target shape. The spatial error was defined by the magnitude of three

distinct error terms: location, orientation, and size error, derived by decomposing the

affine transformation matrix above into translation, rotation, and scaling components,

respectively. In sum, this procedure yielded four error values for each tracing: one value
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representing the shape error (i.e., the pixel-wise correlation distance) and three values

representing the spatial error (i.e., magnitude of translation, rotation, scaling

components).

Although we assumed that both shape and spatial error terms should contribute

to our measure of tracing task performance, we did not know how much weight to

assign to each component to best predict empirical judgments of tracing quality. In

order to estimate these weights, we collected quality ratings from adult observers

(N=70) for 1325 tracings (i.e., 50-80 tracings per shape per age), each of which was

rated 1-5 times. Raters were instructed to evaluate “how well the tracing matches the

target shape and is aligned to the position of the target shape” on a 5-point scale.

We fit an ordinal regression mixed-effects model to predict these 5-point ratings,

which contained correlation distance, translation, rotation, scaling, and shape identity

(square vs. star) as predictors, with random intercepts for rater. This model yielded

parameter estimates that could then be used to score each tracing in the dataset

(N=14372 tracings from 7612 children who completed at least one tracing trial). We

averaged scores for both shapes within session to yield a single tracing score for each

participant.

Measuring effort covariates

For each drawing trial, children had up to 30 seconds to complete their drawings

with their fingers. We recorded both the final drawings and the parameters of each

stroke produced by children at the drawing station, allowing us to estimate the amount

of time children put into their drawings. As a second measure of effort, we also counted

the number of strokes that children put into a given drawing. Finally, we estimated the

proportion of the drawing canvas that was filled (e.g., ’ink used’) by computing the

proportion of each final drawing that contained non-white pixels.

Estimating drawing recognizability

Visual Encoder. To encode the high-level visual features of each sketch, we

used the VGG-19 architecture Simonyan and Zisserman (2014), a deep convolutional
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neural network pre-trained on Imagenet classification. We used model activations in the

second-to-last layer of this network, which is the first fully connected layer of the

network (FC6), as prior work suggests that it contain more explicit representations of

object identity than earlier layers (Fan et al., 2018; Long, Fan, & Frank, 2018; Yamins

et al., 2014). Raw feature representations in this layer consist of flat 4096-dimensional

vectors, to which we applied channel-wise normalization across all filtered drawings in

the dataset.

Logistic regression classifier. Next, we used these features to train an object

category decoder. To avoid any bias due to imbalance in the distribution of drawings

over categories (since groups of categories ran at the station for different times), we

sampled such that there were an equal number of drawings of each of the 48 categories

(N=22,272 drawings total). We then trained a 48-way logistic classifier with L2

regularization (tolerance = .1, regularization = .1), and used this classifier to estimate

the category labels for a random held-out subset of 96 drawings (2 drawings from each

category). No additional metadata about the age of the child who produced each sketch

was provided to the decoder. This procedure was repeated for entire dataset (K=232

fold) yielding both a binary a recognition score and the softmax probability assigned to

each target class in the dataset. We define classifier evidence as the log-odds ratio of

the probability assigned to the target category vs. the other categories in the dataset;

this metric thus captures the degree to which a given drawing contains features that are

diagnostic of the target category (and not of the other categories in the dataset); these

log-transformed values are also more suitable for the linear-mixed effects models used in

analyses.

Mixed-effect models. Two mixed effects models were fit to assess the degree

to which children produced more recognizable drawings across childhood. A first

generalized mixed effect model was fit to the binary classification scores for each

drawing using a logit linking function. A second linear mixed effect model was fit to the

log-odds target probability assigned to each drawing, restricting our analyses to

correctly classified drawings. In both cases, we included fixed effects of children’s age
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(in years), estimated drawing frequency for each category (via parental report), their

interaction, children’s estimated tracing score (see above), the time children spent

drawing (in seconds), the mean intensity of the drawing (i.e. percentage of non-white

pixels), and the number of strokes children used. All predictors were scaled to have a

mean of 0 and a standard deviation of 1. Random intercepts were included for each

participant and each category.

Animacy & object size information in misclassified drawings. For each

drawing, we calculated whether the category assigned by the logistic regression classifier

was of the same animacy as the target category, assigning a binary animacy

classification score for each drawing. The same procedure was repeated for inanimate

objects with respect to their real-world object size (big objects: larger than a chair,

small objects: can be held with one hand, see (Konkle & Oliva, 2011; Long et al.,

2016)). These binary scores were averaged for each age and category, yielding a value

between 0 and 1 representing the proportion of the drawings that were identified as

having the correct animacy/size. As the proportion of animals/inanimate objects and

big/small inanimate objects was not exactly balanced in the dataset, we subtracted the

baseline prevalence for each broad category (i.e for animals, objects, big objects, and

small objects) from this proportion. These values are plotted in Figures 3B,C, as are

the bootstrapped 95% confidence intervals calculated using the baseline-corrected

category values.

Visual recognition task

Behavioral task. On each trial of the guessing game, a photograph or drawing

of an object category was presented on the screen, and children were asked to “tap the

[animal/vehicle/object] that goes the with the [drawing/picture]”; response choices were

indicated by circular buttons that were filled photographs of canonical exemplars from

each category, as well as the name of the category written above; the position of these

response buttons was randomized for each participant. A fifth response choice was a

button with a question-mark icon that could be used by participants to indicate they
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didn’t know which category the drawing belonged to. To familiarize participants with

the interface, the first four trials of every game were four photograph trials, one for each

of the response choices. To encourage accurate guessing, a pleasant sound was played

when the correct category was chosen, and the box surrounding the image briefly

turned green; no feedback was given for incorrect trials. Every ten trials, a catch trial

appeared where participants were required to match a very similar photograph to the

photographic response buttons.

Drawing selection. We selected four subsets of categories for the guessing

game at the station: small animals (dog, fish, rabbit, bird), vehicles (train, car, airplane,

boat), small, inanimate objects (hat, bottle, cup, lamp), and large animals (camel, sheep,

bear, tiger). Each version of the guessing game ran separately for approximately two

months. For each game, we randomly selected drawings (20-25 per category, depending

on availability) made by children ages 4-9 at the drawing station. We chose this age

range to cover a wide range of drawing abilities and to ensure equal numbers of

drawings were included per age group (as 9-10 year-old’s are infrequent visitors to the

museum). This resulted in 516—616 drawings for each guessing game from which 48

drawings were randomly sampled for each participant (8 drawings made by 4-,5-,6-,7-,8-,

and 9-year-olds). If children completed the entire session, this resulted in a total of 56

trials for each participant (48 drawing trials and 8 photograph matching trials).

Recognition data inclusion. As with the drawing data, we excluded any

sessions where there was reported interference from parents or other children. As

2-year-old’s showed significantly better performance than 3-year-old in our first two

guessing games–signaling some interference from their caregivers or siblings that was

not reported in the surveys–we chose to exclude 2-year-old’s from subsequent analyses.

We excluded children who started the game but did not complete more than 1 trial

after the practice trials (N = 1068 participants) and the 238 adults who participated.

We also excluded all trials with reaction times slower than 10s or faster than 100ms,

judging these to be off-task responses. Next, we excluded participants on the basis of

their performance on practice and catch photograph matching trials. Given that these
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catch trials presented a very easy recognition task, we excluded participants who did

not achieve at least 75% accuracy on these trials (N = 795). The remaining 1789

participants who met this criterion completed an average of M=21.69 trials. On total,

we analyzed 36,615 trials where children recognized each other’s drawings. These

analysis choices were pre-registered after examining data from two of the guessing

games and then applied to the entire dataset (see https://osf.io/dahkm).

Recognition data analyses. To calculate the classifier evidence associated

with each sketch that children recognized, we used the same visual encoder to extract

visual features for each sketch (see Visual Encoder), and iteratively trained logistic

regression classifiers (see Logistic Regression Classifier). For these analyses, we

restricted the classification set to the drawings that were presented in each version of

the guessing game to match the task conditions of the guessing game. We trained a

separate logistic regression for each sketch that was presented using leave-one-out

cross-validation. This procedure thus yielded probabilities assigned to each of four

categories in each guessing game; these probabilities were used to calculate the log-odds

ratios for the target category of each sketch which we refer to as classifier evidence. Due

to random sampling, not every sketch included in the game had valid guesses associated

with it; these sketches were thus not included in analyses. We then modeled children’s

recognition behavior in a generalized linear mixed-effect model, where recognizer age (in

years), classifier evidence, and their interaction were specified as fixed effects. All

predictors were scaled between 0 and 1. We included random intercepts for the intended

category of the sketch and for each subject who participated in the guessing game;

random slopes were also included for the effect of classifier evidence on each intended

category.
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Appendix A

Demographics of drawing participants

Age Number of participants Number of drawings

2-year-olds 1231 3651

3-year-olds 1402 5342

4-year-olds 1451 6559

5-year-olds 1189 6411

6-year-olds 878 4990

7-year-olds 660 3817

8-year-olds 478 2570

9-year-olds 309 1800

10+-year-olds 486 2630
Table A1

Number of participants and drawings included in the filtered dataset by each age group.
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Appendix B

Supplemental analyses & figures

Drawing recognition: Including only high-performing children.

To ensure that these results were not driven by differences in motivation or

general task performance, we also conducted our main analyses on a very restricted

subset of our participants. We excluded any participant that did not achieve 100% on

the photograph matching trials or that scored less than 50% on the drawing recognition

trials. While this excluded nearly two-thirds of our participants, there were nonetheless

N=649 participants in this subset. Nonetheless, we still found the same pattern of

results (see Table B1): older children were still better at recognizing drawings and at

using diagnostic visual information in these drawings when recognizing them.

Estimate Std. Error z value

(Intercept) 0.668 0.099 6.717

Classifier evidence (scaled) 0.518 0.051 10.059

Recognizer age (scaled) 0.141 0.023 6.190

Classifier evidence*Recognizer Age 0.056 0.023 2.464
Table B1

Model coefficients of a GLMM predicting visual recognition performance, excluding any

participant who missed even one of the photograph trials or who scored less than 50% on

drawing recognition trials.
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Additional figures

Figure B1 . Examples of correctly classified drawings from each of the 48 categories

presented at the experiment station in alphabetical order: airplane, apple, bear, bed,

bee, bike, bird, boat, book, bottle, bowl, cactus, (2nd row): camel, car, cat, chair, clock,

couch, cow, cup, dog, elephant, face, fish, (3rd row): frog, hand, hat, horse, house, ice

cream, key, lamp, mushroom, octopus, person, phone, (4th row): piano, rabbit, scissors,

sheep, snail, spider, tiger, train, tree, TV, watch, whale.
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High effort drawings

Low effort drawings

High
Medium
Low 

Figure B2 . (Left): Classification accuracy by age, split into bins according to whether

children expended a greater/lesser amount of strokes, ink, or time, and by their

estimated tracing abilities (see Methods). (Right): Example drawings where children

spent higher/lower amounts of effort—greater/lower than average number of strokes,

time spent drawing, or ’ink’ used.


