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Abstract

Compositionality is a core feature of human cognition and be-
havior. People readily decompose visual objects into parts and
complex procedures into subtasks. Here we investigate how
these two abilities interact to support learning in a block-tower
assembly experiment. We measured the way participants seg-
mented these towers based on shape information alone, and
asked how well the resulting parts explained the procedures
other participants used to build them. We found that people de-
composed these shapes in consistent ways and the most com-
mon parts appeared especially frequently as subroutines in the
assembly experiment. Moreover, we found that the subrou-
tines participants used converged over time, reflecting shared
biases toward certain ways of reconstructing each tower. More
broadly, our findings suggest important similarities between
the perceptual and procedural abstractions humans use to per-
ceive and interact with objects in their environment.
Keywords: planning; visual reasoning; task decomposition;
abstraction; chunking

Human environments are filled with objects and structures
that members of our species have made. The variety of these
objects demonstrates our capability of learning how to con-
struct new kinds of entity. Making things is easy for us–
we are able to pick up a new piece of furniture from IKEA
and put it together ourselves, usually on the first try. Fur-
thermore, the presence of a new kind of object is rarely an
enigma– our visual systems are extremely good at breaking
down objects into component parts, providing a representa-
tion we can use to understand what something is and how
it works. How are the ability to create and the ability to
perceive complex objects related? Here we explore the rela-
tionship between procedural and perceptual abilities through
two kinds of abstraction– the composition of multiple actions
into procedural abstractions, and the decomposition of vi-
sual scenes through visual decomposition. While these two
phenomena have been studied separately, we present a first
attempt at studying their relationship in an explicitly compo-
sitional task– physical assembly.

Procedural abstractions In tasks that involve making ex-
tended sequences of decisions, an effective way of learning
is through procedural or temporal abstraction– the chunk-
ing of multiple actions or decisions into a single unit. Hu-
mans learn extended sequences of actions (Huys et al., 2015;
Xia & Collins, 2020), allowing them to represent task struc-
ture hierarchically (Botvinick, Niv, & Barto, 2009; Solway et
al., 2014). The use of ‘temporal’ abstractions (e.g. options
(Sutton, Precup, & Singh, 1999)) in reinforcement learning

drastically improves the ability of agents to learn complex
behaviors, particularly in tasks where simulating possible ac-
tions with a model has proved useful (Botvinick et al., 2009),
as is the case in physical assembly (Bapst et al., 2019; Ham-
rick, 2019). However, the task of discovering useful temporal
abstractions is computationally expensive (Botvinick & We-
instein, 2014), so is unlikely to explain how humans rapidly
decompose problems into tractable units. Recent work has
begun to explore other computational methods for task de-
composition in humans (Correa, Ho, Callaway, & Griffiths,
2020), however these approaches have largely focussed on
inferring hidden problem structure (Tomov, Yagati, Kumar,
Yang, & Gershman, 2020), rather than making decisions
about how best to organize behavior in a largely observable
world.

Visual decomposition If aggregating actions we perform
while making a something is one part of learning how to
assemble something, another vital element is understanding
the changes in object structure that correspond to those ac-
tions. One source of this information is the visual perception,
which actively structures our representations of what we see.
This process is partly achieved through stable principles and
biases (Koffka, 1935; Wertheimer, 1938) that determine the
which elements in a scene are likely to be grouped together
(such as proximity, similarity, common fate, and good con-
tinuation) (Wertheimer, 1938), as well how to segment fig-
ure from ground. Other approaches have explored the flex-
ibility of our object representations in response to certain
kinds of knowledge, such as an object’s category (Schyns,
Goldstone, & Thibaut, 1998; Goldstone, 2003). As well as
carving up the visual array into distinct units, we group el-
ements together into chunks (Miller, 2020) through princi-
ples that determine the hierarchical relationships between el-
ements (Palmer, 1977), as well as by picking up on statisti-
cal regularities such as the likelihood of parts occurring to-
gether (Fiser & Aslin, 2001, 2005; Orbán, Fiser, Aslin, &
Lengyel, 2008). We also use such statistical information to
adaptively change the parts (or ‘features’) of an object we
emphasize when making judgements about category or iden-
tity (Austerweil & Griffiths, 2011, 2013), and information
about an object’s parts has been explored as object recog-
nition (Biederman, 1987). Prior work has explored visual
grouping due to expertise in settings involving interaction
(De Groot, 2014; Chase & Simon, 1973), although less atten-



tion has been given to how humans adaptively change repre-
sentations of more meaningful objects over short timescales.
Perceptual decomposition is also rarely explored in the con-
text of generative behaviors that involve interacting with ob-
ject structure.

Generative behaviors and perception The way people
perceive objects and the procedures uses to generate them
have typically been studied separately, however a growing
body of evidence points to a mutually supportive relationship
between the two. A number of approaches have explored
how generative behavior can lead to more robust percep-
tual skills, for example in hand-writing (James & Gauthier,
2006; James, 2017; Zemlock, Vinci-Booher, & James, 2018),
and in drawing (Fan, Yamins, & Turk-Browne, 2018). The
“vision as inverse graphics” (Yildirim, Kulkarni, Freiwald,
& Tenenbaum, 2015; Kulkarni, Whitney, Kohli, & Tenen-
baum, 2015) also suggests that generative representational
formats, a kind that might be learned during assembly expe-
rience, can underlie effective recognition (Lake, Salakhutdi-
nov, & Tenenbaum, 2015). Conversely, perceptual abstrac-
tions may also support effective decision making in com-
plex tasks. The integration of state abstractions mirroring hu-
man visual perception provided a breakthrough in achieving
human-level results in video games (Mnih et al., 2013, 2015),
and the object-oriented nature of human cognition has lead
researchers to explore the computational benefits of graph-
based state representations that highlight relations rather than
features (Battaglia et al., 2018; Bear et al., 2020). While work
in this area has started to explore physical assembly (Bapst et
al., 2019), whether state abstractions could support rapid dis-
covery of procedural abstractions remains unclear.

Physical assembly In this paper we explore perceptual de-
composition as an explanation for people’s ability to success-
fully recreate complex objects with little to no experience.
Physical assembly is a natural behavior that requires a contin-
uous back and forth between perception and the active trans-
formation of the thing you are perceiving. Prior work investi-
gating the cognitive mechanisms supporting physical assem-
bly analyzed the people’s actions as they attempted to accu-
rately reconstruct 2D block towers, given only an ambigu-
ous silhouette of the tower as reference (McCarthy, Kirsh,
& Fan, 2020). In a web-based building environment partici-
pants were supplied with a fixed set of rectangular blocks, and
aimed to recreate the same 8 towers over multiple attempts
(Figure 1 B, C. The authors found a great deal of overlap in
the sequences of block placements made by participants, even
the first time they tried to build each tower. A potential ex-
planation for this is that participants identified many of the
same subtasks– namely, specific parts of the silhouette that
they reconstructed over a sequence of actions. Here we ex-
plore a specific reason for why this might be the case– that
participants perceptually decomposed silhouettes in consis-
tent ways, and that they treated these perceptual decompo-

sitions as subtasks. To explore this possibility, we present
an novel experiment in which a new set of participants were
asked to partition the same ambiguous block-tower silhou-
ettes into what they considered were its ‘natural subparts’
(Palmer, 1977). To assess how these parts relate to procedural
abstractions, we directly compare them to common subrou-
tines of participants who assembled the same silhouettes out
of blocks. In sum, our paper represents a first attempt at de-
lineating the relationship between perceptual and procedural
abstractions during physical assembly.

Methods

We first needed a measure of how people perceptually decom-
posed silhouette stimuli. Although segmentation-like pro-
cesses likely occur at multiple points during perception, we
were most interested in those that directly influence decisions
about how to consrtuct an object. We thus asked participants
to identify the “natural subparts” of an object using a different
generative task: coloring-in.

Stimuli Participants were presented with the 8 block-
tower silhouettes from the silhouette assembly experiment
(McCarthy et al., 2020) (Figure 1B,C). Towers from the as-
sembly experiment were created from a fixed set of rectangu-
lar blocks, designed to fit within an 8x8 grid-world environ-
ment. In our (decomposition experiment), this grid was su-
perimposed onto each silhouette, partitioning it into squares
that could be filled with a color to delineate the “parts” of
the shape (Figure 1A). Unlike the assembly experiment, sil-
houettes in the decomposition experiment were centered in
a uniform grey box, and participants were not told that the
“shapes” presented were silhouettes of stable towers, or that
they were generated from a specific set of blocks.

Task Participants were presented with all 8 silhouettes in a
randomized order. They were told that there was “no correct
way” of decomposing them, but to “color them in according
to how you see the parts of the shape”, and were encouraged
to provide decompositions that “felt natural”. Squares were
selected by clicking on them individually or, to encourage
selection of contiguous regions, by dragging the mouse to se-
lect multiple squares. We assessed comprehension with a se-
quence of practice trials, which involved a range of rectangu-
lar and non-rectangular “parts” to avoid biasing participants
towards selecting regions of any particular shape. Participants
could use up to 9 different colors, and filled the entire silhou-
ette before progressing to the next trial.

Participants 50 US- and UK-based participants were re-
cruited from Prolific. 1 participant was excluded for not fol-
lowing instructions.
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Figure 1: By coloring-in squares (A), participants were asked to segment silhouettes of 2D block towers (B). In a separate
assembly experiment, the same silhouettes were reconstructed by placing blocks (C). We identified the most common parts se-
lected by participants in the decomposition experiment (D) (top-left: number of participants who identified part), and compared
these with common subroutines used by participants who constructed towers (E) (top-left: proportion of assembly participants
who built part over consecutive actions during first assembly attempt).

Results
Participants decompose silhouettes into consistent
parts
Participants produced a single decomposition of each silhou-
ette into a set parts. 63.8% (95% CI: [43.6,83.9]) of the de-
compositions for each silhouette were unique, confirming that
each could be segmented in a variety of ways. Some silhou-
ettes evoked more varied decompositions than others, ranging
from one that yielded just 14 unique decompositions (28.6%),
to another that was decomposed differently by all 49 partic-
ipants. The number of parts highlighted in each tower was
also highly variable (M = 5.39,SD = 0.947), with silhouettes
that were identified as having more parts generally receiving
a more varied set of decompositions.

Despite the large variety in entire decompositions, there
was a great deal of overlap in the parts that participants iden-
tified (Figure 1 D). Participants seemed largely biased to-
wards rectangular parts, which made up (82.9%, 95% CI:
[81.4,84.6]) of all parts identified, and were particularly well
represented among the most frequently identified parts– of
the 8 most commonly identified across all 8 silhouettes, only
two were not rectangular. Still, a substantial portion of the
unique parts identified were non-rectangular 39.8% (95%
CI: [28.5,51.1]). These were typically shared across fewer
decompositions– 2.24 (95% CI: [1.11,3.36]) compared to
7.11 (95% CI: [4.86,9.35]) for rectangular parts– suggesting
that participants shared some common strategies for decom-
posing silhouettes into rectangles among more idiosyncratic
ways of decomposing the silhouettes into less regular shapes,
in line with prior work suggesting a bias towards geometric

simplicity in perceptual organization. This may explain an-
other feature of the parts identified: that a large proportion
of the them (22.4% (95% CI: [18.7,26.0])) were of the same
shape as one of the 5 kinds of blocks used to generate the
towers. This may be surprising, given that participants in the
decomposition task did not know that the silhouettes were
generated from rectangular blocks, let alone the dimensions
of those blocks, and may suggest that perceptual decompo-
sition provides relatively accurate clues about the underlying
structure of towers in the assembly experiment.

How well do commonly identified parts explain
assembly behavior?
We suspected that such clues may have helped participants
accurately reconstruct towers in the assembly experiment
(McCarthy et al., 2020). In particular, we hypothesized that
perceptual decomposition defined regions of the silhouettes
that participants would be likely to construct over a sequence
of block placements. We therefore inspected the actions made
by participants in the assembly experiment for contiguous
subsequences of block placements that generated the parts
identified in the decomposition experiment. Because this is
a between-subject comparison, and the less frequently iden-
tified parts from the decomposition experiment seemed to re-
flect more idiosyncratic strategies, we limited our search to
the k most common parts from each tower, where k was se-
lected to include 85% of all parts identified, giving us up to
k = 28 parts for each tower.

More common parts built more frequently 31.9% (95%
CI: [21.9,41.9]) of the common parts did not appear recon-



structions at all. Qualitative analysis revealed that many of
these parts would have been impossible to build with the set
of blocks available in the building study, for example because
they contain the wrong number of grid squares or would be
physically unstable. In other words, some of the ways partic-
ipants segmented the silhouettes do not correspond to valid
task decompositions for the assembly experiment, and addi-
tional work is needed to assess the extent to which systematic
errors in the assembly experiment can be explained by these
structural parses. The majority of the common parts (68.1%
95% CI: [58.1,78.1]) did appear in building procedures, con-
sistent with perceptual decomposition playing some role in
identifying subtasks in the assembly experiment.

To better understand how parts from the decomposition ex-
periment relate to assembly behavior, we analyzed how often
parts were built at different points in the assembly experi-
ment. Each participant in the assembly experiment attempted
to recreate half of the silhouettes 2 times, and the other half 4
times. As prior work revealed no substantial differences be-
tween final reconstructions of towers attempted 2 times and
those attempted 4 times, we collapsed across conditions and
compared first and final building attempts from both groups.
We fit a linear mixed effects model predicting the proportion
of tower reconstructions that contained each part, limiting our
search to those parts that were built at least once. We in-
cluded fixed effects for attempt (first vs. final) and the num-
ber of times the part was identified in the perceptual experi-
ment, and random intercepts and slopes for each tower. Also
consistent with our hypothesis that perceptual decomposition
contributes to subtask selection, we found that parts that were
more frequently identified in the decomposition experiment
were also built more frequently in the assembly experiment
(b = 0.01074, t = 9.87, p < 0.001).

Change in prevalence of parts with assembly practice
We also found that the parts identified in the decomposition
experiment were built more frequently in final attempts than
in first attempts (b = 0.0449, t = 2.18, p = 0.0302) of the
assembly experiment. Two prior findings may explain this
result. Firstly, participants in the assembly experiment built
more complete and accurate towers in their final attempts. As
parts from the decomposition experiment are necessarily re-
gions within the silhouette, the more blocks that are placed
within a silhouette, the more likely it is for a part to be built.
Secondly, participants’ used increasingly consistent sets of
actions throughout the experiment, which may be the due to
a set of subroutines becoming more common with practice.
We thus decided to analyze the subroutines that participants
used in the assembly experiment, first to assess whether they
do become more consistent throughout the experiment, and
second to see how they relate to the parts identified in the
decomposition experiment.
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Figure 2: (A) Common subroutines occurred across more par-
ticipants’ reconstructions in final attempts, compared to first
(lines are different towers). (B) Those subroutines that were
also commonly identified parts were more strongly shared
across participants.

Use of subroutines in assembly behavior
To measure the use of subroutines throughout the experiment,
we identified the parts of each structure that were most likely
to be built over a contiguous sequence of actions, and ob-
tained a reliable measure of their consistency across partici-
pants using leave-one-out (LOO) cross validation. We found
the 12 most common parts generated by sequences of 1 to
5 block placements, from the reconstructions of N − 1 = 48
assembly experiment participants, and recorded whether or
not each of these common parts was also constructed (across
any sequence of block placements) by the remaining ‘left-out’
participant. As the frequency of subroutines could possibly
change throughout the experiment, common subparts were
identified separately for first and final attempts. This process
was repeated for all participants, yielding a set of common
subroutines along with a proportion of left-out participants
that used them (e.g. Figure 1 E), allowing us to calculate an
aggregate measure of the consistency of subroutines used in
an attempt, as well as identify which of the most common
subroutines were also parts identified in the decomposition
task.

To assess whether participants’ final reconstructions con-
tained more consistent subroutines than their initial ones, we
fit a logistic linear mixed-effects model predicting whether
each common subroutine appeared in the building procedure
of the left-out participant. We included fixed effects for at-
tempt (i.e., first, final) and number of block placements, an in-
teraction term between the two, random intercepts and slopes
for each tower, as well as a random intercept for partici-
pant. We found that larger subroutines were less likely to
be shared by multiple participants than smaller subroutines
(b =−0.699, t =−53.4, p < 0.001), as expected. Neverthe-



less, participants shared a modest number of subroutines in
their initial building attempts: single-block subroutines ap-
peared in 19.8% (95% CI [14.5 26.4]), two-block subrou-
tines in 10.9% (95% CI [7.77 15.1]), and three-block sub-
routines in 5.74% (95% CI [4.02 8.13]) of attempts (Figure 2
A). These results indicate that participants do reconstruct tow-
ers by building some of the same parts, even when building
the tower for the first time. More revealingly, the subroutines
used by different participants were more consistent in final at-
tempts than in first attempts (b = 0.407, t = 4.43, p < 0.001)
(Figure 2 A). This suggests that the parts identified in the de-
composition experiment are built more frequently across the
assembly experiment because they make up some of the sub-
routines that participants build more consistently throughout-
a possibility we explore more in the next section. We also
found a reliable interaction between number of blocks and at-
tempt (b = 0.0754, t = 4.54, p < 0.001), which may reflect a
greater increase in agreement about how to reconstruct larger
parts of the towers.

How do common subroutines relate to
decomposition behavior?
Commonly identified parts built more than other subrou-
tines To see whether participants were more likely to dis-
cover subroutines specifically for constructing parts identified
during decomposition, we augmented the subroutine model
from above with a binary variable indicating whether or not
each subroutine reconstructed a commonly identified part in
the decomposition experiment. This version of the model
yielded a similar pattern of results as the previous model (at-
tempt (b = 0.365, t = 0.0952, p < 0.001), number of blocks
(b =−0.670, t =−49.7, p < 0.001), interaction (b = 0.0839,
t = 4.89, p < 0.001)). We found a slight, but statistically in-
significant, interaction between attempt and being a common
part (b = 0.0985, t = 1.85, p = 0.0634), suggesting that the
convergence of subroutines was not primarily driven by con-
vergence to these parts. However, subroutines that were parts
were built by more participants across the board (b = 0.376,
t = 9.38, p < 0.001) (Figure 2 B), suggesting that the way
people visually decompose silhouettes plays an important but
stable role in the selection of subroutines throughout.

Common subroutines form part of accurate reconstruc-
tions Finally, we sought to better characterize the subrou-
tines that become more and less consistent with practice. We
visualized subroutines with the greatest increases and de-
creases in prevelance from first to final attempt Figure 3.
Several of the greatest decreases in consistency were from
subroutines that extended beyond the silhouettes, supporting
the idea that convergence in subroutines is partly achieved
by participants pruning systematic errors from the space of
actions they consider. Furthermore, we found that many of
the largest increases in consistency came from subroutines
representing individual block placements (rectangles of 1x2,
2x1, 2x2, 2x4, and 4x2 grid squares), many of which were

required to perfectly reconstruct the tower they were attempt-
ing.

Finally, prior work showed that the more accurately a par-
ticipant built a tower in one attempt, the less they would up-
date their procedure in the following attempt (McCarthy et
al., 2020), suggesting that subroutines that form part of a suc-
cessful reconstruction may be less affected by assembly prac-
tice. We therefore reran the analysis from the previous sec-
tion on just the perfectly reconstructed towers in the assem-
bly dataset, removing the part indicator variable. We found
that common subroutines from these towers were shared by a
greater proportion of reconstructions overall– in first attempts
single-block subroutines appeared in: 56.0% (95% CI [0.474,
0.642]) of left-out reconstructions; two-block: 41.4 % (95%
CI [33.5, 49.8]); and 3-block: 28.3% (95% CI [21.9, 35.6]).
Additionally, and consistent with prior work demonstrating
that successful procedures are updated less, the subroutines
used to create perfect reconstructions did not become more
consistent with practice (b = 0.0363, t = 0.270, p = 0.788),
and instead remained at high levels of consistency. This
suggests that the convergence we observed in the whole set
of reconstructions is mainly driven by participants updating
their unsuccessful attempts to include those subroutines used
throughout by participants who originally reconstructed the
tower successfully– namely those that are necessary to accu-
rately reconstruct the towers.

.36 .33 .33 .24
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Figure 3: Common subroutines with greatest difference in oc-
currences between first and final assembly attempts (change
in proportion shown top left), for one silhouette. Subroutines
that extended beyond the silhouette became less common (or-
ange), and subroutines for accurately recreating the silhou-
ettes became more common (blue).

Discussion
In this paper we presented a paradigm for measuring detailed
aspects of decomposition, and explored its relationship to
physical assembly behavior. We found a great deal of consis-
tency among the parts identified by participants, but enough
variability among entire decompositions to suggest that dif-
ferent decompositions may contribute to differences in recon-
struction procedures. We also found that parts that were more
frequently identified in the decomposition experiment were
more likely to be built by different participants assembling



the same towers out of blocks. Moreover, participants assem-
bled towers using increasingly consistent sets of subroutines
throughout the experiment and, of these, the most consistent
were also identified in the decomposition task.

Our study suggests a relationship between the actions peo-
ple perform when making an object and the way people per-
ceptually decompose those objects. Illuminating this relation-
ship could have consequences for our understanding of how
we rapidly learn to construct new kinds of entities, and more
generally for how we utilize the visual system to solve com-
plex problems. The phenomena studied here may also hold
implications for algorithmic accounts of abstraction, that have
traditionally treated ‘state’ and ‘temporal’ abstractions as dis-
tinct, as well as raise questions about the content and format
of the internal representations that are used to support percep-
tion and action.

Our results suggests several avenues for clarifying the un-
derlying relationship between perceptual decomposition and
procedural abstraction. Firstly, while we observed a bias to-
wards geometrically simple units that is in line with prior
work on perceptual organization, the extent to which our de-
composition task is a reliable measure of perceptual decom-
positions is unclear. Evaluating existing models of percep-
tual segmentation on the decompositions yielded in our task
may help disentangle the contributions of perceptual decom-
position and the coloring-in task that participants performed.
This initial investigation could be augmented to clarify how
people represent the parts of an object. For example, where
the current study measured decompositions from participants
that were naive to the physical structure of the towers, par-
ticipants that knew that the shapes they were building were
subject to gravity, or made from rectangular blocks, may seg-
ment them differently. Such studies could reveal the contri-
bution of different kinds of representation on task decompo-
sition. The experiments presented in this paper also provide
the tools for exploring how generative experience changes the
way people parse and interpret the parts of a physical struc-
ture. Such studies may have implications for theories of how
perceptual representations and procedural knowledge interact
in the mind, as well as the many natural behaviors that rely
on a tight coordination between them.
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