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Abstract

The ability to reason about how things were made is a pervasive aspect of how humans make sense
of physical objects. Such reasoning is useful for a range of everyday tasks, from assembling a piece
of furniture to making a sandwich and knitting a sweater. What enables people to reason in this way
even about novel objects, and how do people draw upon prior experience with an object to continually
refine their understanding of how to create it? To explore these questions, we developed a virtual task
environment to investigate how people come up with step-by-step procedures for recreating block tow-
ers whose composition was not readily apparent, and analyzed how the procedures they used to build
them changed across repeated attempts. Specifically, participants (N = 105) viewed 2D silhouettes of
eight unique block towers in a virtual environment simulating rigid-body physics, and aimed to recon-
struct each one in less than 60 s. We found that people built each tower more accurately and quickly
across repeated attempts, and that this improvement reflected both group-level convergence upon a
tiny fraction of all possible viable procedures, as well as error-dependent updating across successive
attempts by the same individual. Taken together, our study presents a scalable approach to measuring
consistency and variation in how people infer solutions to physical assembly problems.

Keywords: Planning; Spatial reasoning; Intuitive physics; Construction; Action

Humans have populated much of the world with physical artifacts of their own design, from
sand castles to skyscrapers. Taken together, these structures exemplify the human capacity to
interact with the physical world in creative, yet goal-directed ways. This creative capacity
also manifests in many everyday tasks, from assembling a piece of furniture to making a
sandwich and knitting a sweater. In these scenarios, people rely upon their ability to not
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only judge the static properties of objects (e.g., their size, shape, weight), but also to infer
the process by which objects are made (e.g., the parts they consist of and how to arrange
them). What cognitive mechanisms enable people to engage in such reasoning about complex
objects, and how do people draw upon prior experience with an object to continually refine
their understanding of how to create it?

Perhaps the most basic requirement is a general-purpose and intuitive understanding of
how material objects interact in the physical world, a suite of abilities known as intuitive
physics (McCloskey, 1983). That is, even without performing formal calculations, people
can make reasonably accurate predictions about how objects will behave in a variety of set-
tings (Kubricht, Holyoak, & Lu, 2017; Smith, Battaglia, & Vul, 2018). A prominent pro-
posal argues that generating these predictions relies on mental simulation, perhaps reflecting
a noisy approximation to real-world physical dynamics (Battaglia, Hamrick, & Tenenbaum,
2013; Hegarty, 2004; Hamrick, Smith, Griffiths, & Vul, 2015; Smith & Vul, 2013; Sanborn,
Mansinghka, & Griffiths, 2013; Schwartz & Black, 1999). Recent work has explored the role
that simulation plays when people plan single interventions on physical scenes—for exam-
ple, joining two blocks together to stabilize a block tower (Hamrick et al., 2018) or causing
an object to move into a target zone (Allen, Smith, & Tenenbaum, 2020; Dasgupta, Smith,
Schulz, Tenenbaum, & Gershman, 2018). However, the role of physically grounded men-
tal simulation has yet to be fully explored in the context of the multi-step action sequences
required to assemble a complex object (Kurth-Nelson et al., 2023; Kirsh, 1995; Schwarten-
beck et al., 2021). This gap in knowledge at least in part reflects the methodological chal-
lenges posed by measuring behaviors as open-ended as physical assembly while maintaining
a sufficient degree of experimental control (Cortesa et al., 2017, 2018; Wolfgang, Stannard,
& Jones, 2001).

Recent advances in the study of multi-step planning and decision-making in other settings
suggest promising ways forward (Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Huys
et al., 2015; Solway & Botvinick, 2015, 2012). To the degree that these “grid-world” environ-
ments used often in this work sacrifice physical realism, they do so in favor of empirical and
formal tractability (Van Opheusden, Galbiati, Bnaya, Li, & Ma, 2017; van Opheusden & Ma,
2019; van Opheusden et al., 2023). Nevertheless, as the state space grows, the computational
cost of conducting thorough mental simulations over the full set of possibilities becomes pro-
hibitive (Callaway et al., 2018; Hamrick et al., 2015; Huys et al., 2015; Solway & Botvinick,
2015, 2012). Prior work has found evidence that humans use a variety of strategies to reduce
the cost of planning, such as pruning the search space (i.e., circumventing expensive but
irrelevant action sequences; Huys et al., 2012) and learning procedural abstractions to gener-
ate hierarchically organized plans (Botvinick & Weinstein, 2014; Dezfouli & Balleine, 2013;
Éltető & Dayan, 2023; Huys et al., 2015; Xia & Collins, 2020). However, it remains unknown
which, if any, of these strategies are ones that humans use when attempting to solve physical
assembly problems, in which transitions between states are governed by physical constraints
(e.g., stability, friction) rather than arbitrary rules (Daw et al., 2011). A valuable step toward
bridging this gap would be the development of experimental methods for exploring human
assembly behavior in task environments with a greater degree of physical realism than those
commonly used to probe multi-step decision-making.
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An additional benefit of developing such methods would be the opportunity to investi-
gate the impact of experience on assembly behavior, building on a long tradition of work
investigating changes in problem-solving accompanying the acquisition of expertise (Chase &
Simon, 1973; Campitelli & Gobet, 2004; Sheridan & Reingold, 2017; Van Harreveld, Wagen-
makers, & Van Der Maas, 2007). For example, experience might be linked to changes in both
how people encode state information and how they search over the space of possible solu-
tions. Classic and contemporary work using board games suggests that experts display both a
pronounced ability to plan further ahead in games than novices and to mentally represent the
configuration of game pieces in visual memory with higher fidelity (Chase & Simon, 1973;
Gobet & Simon, 1998; Sheridan & Reingold, 2017; van Opheusden et al., 2023). Moreover,
prior work that used video games to impose substantial demands on rapid spatial reasoning
(e.g., Tetris) has found that experience might also improve the fluency with which participants
explore alternative states and determine the value of potential actions (Maglio & Kirsh, 1996).
In principle, these experience-dependent changes might also apply to the domain of physical
assembly, which would suggest that the underlying learning mechanisms generalize beyond
the problem contexts in which they were initially proposed. On the other hand, it might be that
there are important differences between reasoning domains: for example, problem-solving
experience might have a stronger impact on how state information is encoded in less physi-
cally realistic game environments, such as board games, but a more modest impact in physical
settings, where the mechanisms for encoding physical state are more stable across the lifespan
(Baillargeon, 1995; Spelke & Kinzler, 2007).

Here, we introduce a task paradigm for investigating how people reason about physical
assembly in a virtual environment that is simple enough to provide a high degree of experi-
mental control and formal tractability, but expressive enough to engage multi-step planning
and understanding of core physical concepts (e.g., stability, mass, and friction). We report
our findings from an exploratory study in which participants aimed to construct a series of
2D block towers from a set of rectangular blocks of varying sizes. We restricted the set of
possible actions to placements of a fixed set of parts, enabling straightforward comparison
of building procedures across participants. We further investigated how practice reconstruct-
ing a tower impacts the procedures participants subsequently used to build that tower across
repeated attempts. Our approach takes inspiration from recent studies in which participants
were asked to build copies of actual LEGO structures from LEGO bricks (Cortesa et al.,
2018; Shelton et al., 2022). Findings from this line of work suggest that people converged
upon shared strategies for building these LEGO structures layer by layer, consistent with a
bias toward shared layer-wise subgoals that also corresponded to physical subunits of the
structures themselves (Shelton et al., 2022).

As in this prior work, we go beyond simple measures of assembly performance to char-
acterize the action-by-action procedures people used to build each structure. However, our
methodological approach differs in three key ways: First, because the current study aims to
investigate the role of experience in assembly behavior, here we ask participants to build the
same structures multiple times, allowing us to ask how practice influences the procedures that
people use. Second, in order to put greater pressure on participants’ ability to reason about
how an object could be made, we presented participants with silhouettes of block towers
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that could in fact be built in many different ways. Third, in order to support high-throughput
measurement of these open-ended behaviors, we developed a virtual assembly environment
embedded in a web application to enable the concurrent participation of many individuals.

1. Method

The goal of our experiment was to investigate how people’s strategies for solving physical
reasoning tasks shift as they gain experience. To achieve this goal, we developed a web-
based environment in which people could construct various block towers under simulated
rigid-body physics. To provide participants with a specific goal, we considered the space of
physical assembly tasks—namely, those in which people must create an exact replica of a tar-
get structure given the set of components used to construct it. However, such straightforward
assembly tasks typically permit only a small range of solutions and can be solved using a
simple strategy of copying block for block (Cortesa et al., 2017). To explore how strategies
change with experience, we needed a task that permitted a large range of solutions. There-
fore, rather than display target towers as a configuration of blocks that could be copied, we
showed participants silhouettes of target towers and asked them to create any configuration of
blocks that matched the silhouette shown. This required participants to infer which blocks to
use, where to place them, and in what order. On each trial, participants aimed to reconstruct a
target tower in less than 60 s using a fixed inventory of rectangular blocks. Over the course of
an experimental session, participants built each tower either two or four times, allowing us to
assess whether additional practice reconstructing a specific tower led to greater improvement
than general practice with the task.

1.1. Participants

Based on data from pilot studies, we estimated that between 100 and 150 participants
would be sufficient to obtain reasonably precise estimates of our measures of consistency
and variability. In the end, we successfully recruited 107 U.S.-based participants from
Amazon Mechanical Turk. After accounting for technical issues during data acquisition (i.e.,
missing data), data from 105 participants were retained (49 females, mean age = 36.8 years).
Participants provided informed consent in accordance with the University of California, San
Diego Institutional Review Board.

1.2. Stimuli

To identify a set of block towers that were nontrivial to reconstruct, we randomly sampled
a large number of stable configurations of 8–16 blocks, then manually selected eight of these
that could be reconstructed in many different ways (Fig. 1B). We started with an inventory of
five types of rectangular blocks that varied in their dimensions (i.e., 1x2, 2x1, 2x2, 2x4, 4x2).
To generate configurations of blocks, we partially filled an 8x8 rectilinear grid, bottom to top,
by sampling random blocks in random x-locations, then randomly selected several blocks to
be removed. We simulated the construction of each tower in a physics engine (Pybox2d),
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Fig. 1. (A) Schematic of task display. The left window contained a target silhouette, and the right contained
a building environment with gridlines. (B) For each participant, the eight silhouettes were randomly assigned to
conditions, four in repeated and four in control. (C) Repeated towers were attempted four times, interleaved among
other towers. Control towers were attempted twice, once at the beginning and once at the end of each session.

rejecting any tower that was unstable at any point during the construction process. To select
towers that required planning ahead, we manually identified eight configurations that included
holes and/or overhanging blocks, and verified that these towers could be reconstructed in
many different ways (59–7128 minimum unique solutions, mean = 2418).

1.3. Design

To more thoroughly characterize the effects of practice on physical construction ability, we
sought to distinguish improvement resulting from general task experience from improvement
resulting from practice reconstructing a specific tower. For each participant, we, therefore,
randomly split the eight block towers into two sets containing four towers each: a control set
and a repeated set (Fig. 1B). Participants reconstructed towers over four consecutive rounds.
In the first (first) and final (fourth) rounds, participants reconstructed all eight towers in a
randomized order. In the middle two rounds (second and third), participants reconstructed
only the four repeated towers, also in a randomized order. Thus, there were a total of 24 trials
in each session: eight first attempts, two rounds of four repeated attempts, and eight final
attempts. In subsequent comparisons between the first and final attempts on each tower, we
combine data from both the repeated sets (built four times) and control sets (built two times).
In analyses of fine-grained changes in behavior across successive attempts on the same tower,
we restrict our analysis to the repeated sets.

1.4. Task procedure

On each trial, participants were presented with two adjacent display windows: on the left,
a target block tower was presented as a silhouette centered on the floor in a 18x13 rectilinear
grid environment (Fig. 1A); on the right, they were provided with an empty building environ-
ment and the inventory of blocks that was used to generate the towers.

Participants’ goal was to build a tower that matched the shape of the target silhouette in
less than 60 s using any combination of the blocks provided. To select a specific block type,
they clicked on its image in the block inventory. Then, by hovering the mouse cursor over the
building environment, a translucent block would appear, showing where the block would be
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placed when they clicked again. Blocks could be placed on any level surface in the building
environment (i.e., either the floor or at least partially supported by another block). To min-
imize the intrusion of low-level motor noise in block placement, the location of each block
“snapped” to a visible grid.

After the placement of each block, participants’ towers became subject to gravity, simulated
using Matter.js. Thus, if their tower was not sufficiently stable, single blocks or even the
entire tower could fall over. After 60 s had elapsed or if any block fell, the trial immediately
ended and participants moved onto the next tower. We truncated trials on which any block
fell for two main reasons: first, to ensure that all recorded block placements could in principle
form part of a forward plan to build the target silhouette, rather than reflect online corrections
for error; and second, to strongly incentivize the production of stable towers. Participants were
rewarded for both accuracy and speed: the more accurate their reconstructions, the larger the
monetary bonus they received. If participants perfectly reconstructed the target silhouette,
they could earn an additional bonus for speed.

1.5. Statistical analysis procedure

Our primary statistical approach involved fitting linear mixed-effects models mirroring, as
close as possible, the structure of the experimental design. This included fixed effects for
round and condition, as well as their interaction, and random intercepts for participant and
tower. We then compared this full model to a series of nested models that had some of the pre-
dictors removed, typically starting with the interaction term, then the effect of condition. To
select a model, we calculated the Akaike Information Criterion (AIC) for each model, select-
ing the most complex model for which AIC substantially dropped relative to the subsequent
simpler model. Full parameter estimates for selected models are reported in the Supplemen-
tary Materials. For statistics outside of the models, we report confidence intervals generated
using bootstrap resampling over 1000 iterations. In each bootstrap iteration, we resampled
participants with replacement from the entire sample, including all data from each participant
every time they were sampled.

2. Results

2.1. Change in reconstruction accuracy across attempts

We first needed a measure of reconstruction accuracy that tracked how well the towers
participants built matched the silhouette they were attempting to reconstruct. Reconstructions
are accurate insofar as they coincide with the same region as the target silhouette, while not
extending beyond it. We, therefore, selected a metric that takes into account both recall (i.e.,
the proportion of the target silhouette that coincided with the participants’ reconstruction)
and precision (i.e., the proportion of participants’ reconstruction that coincided with the
target silhouette). As stable towers existed in a gridworld, we could compute precision and
recall directly by comparing the bitmaps of squares occupied by the target silhouette and
reconstruction. The F1 score takes the harmonic mean of these values to provide a measure
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Fig. 2. (A) Reconstruction accuracy across all four rounds. Control towers were built in only the first and final
rounds. (B) Build time across attempts, separated by perfect (F1 = 1) and imperfect reconstructions. Error bars
represent 95% CI.

that lies in the range [0,1] and reflects the degree to which the participants’ reconstruction
coincided with the target silhouette:

F1 = 2

(recall−1 + precision−1)

In their first attempts, participants’ reconstructions were moderately accurate, suggesting
that they were engaged with the task but not at ceiling performance (control: F1 = 0.790,
95% CI: [0.776,0.803]; repeated: F1 = 0.800, 95% CI: [0.786,0.814]). To evaluate changes
in reconstruction accuracy over time, we fit a linear mixed-effects model predicting F1 score
from attempt (first, final) and condition (repeated, control) as fixed effects, including ran-
dom intercepts for participant and tower (Table S1). We found a main effect of attempt
(b = 0.0759, t = 6.99, p < .001), showing that participants’ reconstruction accuracy reli-
ably improved between their first and final attempts (Fig. 2A). We found no reliable effect
of condition (b = 0.00803, t = 0.737, p = .461), and no evidence of an interaction between
attempt and condition (b = 0.0182, t = 1.19, p = .235), suggesting that these improvements
were at least in part explained by general effects of task practice.

In particular, participants may have learned how to more consistently place blocks that
are fully contained within the silhouettes, resulting in fewer “off-by-one” errors. To explore
this possibility, we visualized the spatial distribution of block placements by constructing a
heatmap of block placements, averaged across participants (Fig. 3). This heatmap suggested
that participants did place a greater proportion of blocks outside of target locations in their
first attempts than in their final attempts. To evaluate this possibility, we defined the spa-
tial error for a given tower on a given attempt as the root-mean-squared cityblock distance
between each location in the heatmap and the edge of the target silhouette (zero if within
the silhouette), weighted by the value at each location in the heatmap. We then computed

 15516709, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13397 by Stanford U

niversity, W
iley O

nline L
ibrary on [28/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 20 W. P. McCarthy, D. Kirsh, J. E. Fan / Cognitive Science 47 (2023)

Fig. 3. (A) Eight target silhouettes used in the experiment. (B,C) Heatmap representations of the spatial distribution
of block placements for each tower, for first and final attempts. The intensity of each cell reflects the proportion of
participants who placed a block in that location.

the mean change in spatial error between their first and final attempts, which revealed that
participants generally made fewer and less extreme errors in their final attempts than in their
first attempts (m = −0.625, 95% CI: [−1.08, −0.209], p = .012).

2.2. Change in reconstruction fluency across attempts

In addition to placing blocks more precisely, participants may have also produced more
accurate reconstructions by improving their ability to place more blocks within the time
available on each trial. To evaluate this possibility, we modeled the change in the number
of blocks used between the first and final attempts using a linear mixed-effects model other-
wise identical in structure to that previously used to analyze accuracy; however, we excluded
trials which were truncated due to blocks falling (Tables S2 and S3). This analysis revealed a
strong main effect of attempt (b = 1.19, t = 7.41, p < .001), showing that participants were
able to consistently use more blocks in their final attempt. There was no evidence of an effect
of condition (b = 0.0425, t = 0.264, p = .792) nor of an interaction between attempt number
and condition (b = 0.167, t = 0.735, p = .463).

There are at least two potential explanations for how participants were able to place more
blocks in their final attempt: first, their fluency with the construction task interface may have
improved, allowing them to select and place more blocks per unit of time; second, they may
have been able to recall previously used procedures for building a given tower, and thus
required less preparation time to devise an action plan prior to placing their first block. We
estimated task fluency by computing the mean time between successive block placements
within a single trial. We estimated preparation time by computing the time between trial
onset and the placement of the first block. We found that task fluency increased (b = −1.34,
t = −13.548, p < .001; Table S4) and preparation time decreased (b = −2.24, t = −8.64,
p < .001; Table S5) between first and final attempts, suggesting that participants’ improved
accuracy may reflect changes in both.

To measure how quickly participants completed their reconstructions, we measured the
amount of time elapsed between the start of each trial and the final block placement on that
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trial, again omitting trials which were truncated due to falling blocks. In their first attempts,
participants used nearly all of the time allotted (control: 51.8s, 95% CI: [51.1, 52.7]; repeated:
52.2s, 95% CI: [51.6,52.8]), and appeared to use less time to build each tower across attempts
(Fig. 2B). To evaluate changes in build time between the first and final attempt, we fit a lin-
ear mixed-effects model including attempt (first, final) and condition (repeated, control) as
fixed effects, including random intercepts for participant and tower (Table S6). This analy-
sis revealed a main effect of attempt (b = −1.92, t = −4.25, p < .001) but not of condition
(b = −0.704, t = −1.80, p = .0725). In exploratory analyses, we discovered that 22.4% of
all trials contained perfect reconstructions (i.e., F1 = 1) of the target silhouette. When we
included an additional binary variable in our regression model indicating whether a trial con-
tained a perfect reconstruction, we discovered that these “perfect” reconstructions took reli-
ably less time than imperfect reconstructions (b = −3.81, t = −4.47, p < .001). Moreover,
a reliable interaction between attempt number and this binary variable revealed that decreases
in build time from first to final attempts were greater for perfect reconstructions (b = −5.04,
t = −5.10, p < .001). Together, these findings suggest that the greatest increases in speed
occurred once participants had discovered a way of producing a perfect reconstruction.

2.3. Change in reconstruction procedures across attempts

Having established that participants build more accurately and quickly across successive
attempts, we then investigated the changes to participants’ construction procedures that under-
lie this improved performance. An increase in speed and decrease in preparation time are
consistent with the possibility that participants reused previous procedures to successfully
reconstruct each tower; however, these holistic measures only indirectly bear on this ques-
tion. We, therefore, derived two measures of similarity between the actions performed across
different building attempts (Fig. 4A).

Each action consists of an individual block placement, represented by a 4-vector
[x, y, w, h], where 0 ≤ x ≤ 15, 0 ≤ y ≤ 13 represents the coordinates of the bottom-left cor-
ner of the current block and where (w, h) ∈ {(1, 2), (2, 1), (2, 2), (2, 4), (4, 2)} represent its
width and height, respectively. Each procedure consists of the full sequence of such actions
performed on a given reconstruction attempt. We define the “sequence dissimilarity” between
any pair of action sequences as the mean Euclidean distance between corresponding pairs
of [x, y, w, h] action vectors (Fig. 4A, top). When two sequences are of different lengths, we
evaluate this metric over the first k actions in both, where k represents the length of the shorter
sequence. This sequence measure compares the dissimilarity of procedures on an action-by-
action basis, and hence assumes that when “similar” actions are executed, they are performed
in exactly the same order. However, we might also consider procedures to be “similar” when
they involve similar shaped blocks placed in similar locations, even when the order of these
block placements varies. To obtain a measure of similarity between procedures that is robust
to differences in the order in which actions are performed, we also derived a measure of
dissimilarity between the sets of actions performed, using the Kuhn–Munkres algorithm to
identify the one-to-one mapping between actions from each attempt that minimizes the mean
Euclidean distance between them (Fig. 4A, bottom). This “set dissimilarity” measure has the
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Fig. 4. (A) Example comparison between building procedures on successive attempts. Numbers on blocks indicate
the order in which they were placed. Sequence dissimilarity (top) compares building procedures on an action-
by-action basis (i.e., block n to block n). Actions involving different sized blocks placed further apart are judged
as more distant. Set dissimilarity (bottom) minimizes the mean distance between actions by ignoring order and
pairing similar actions together. (B) Magnitude of change in sequences of actions (gray) and sets of actions (dark
green) across successive build attempts. Shaded area represents baseline distributions. (C) Magnitude of change in
sets of actions as a function of accuracy (F1) on previous attempt, for each pair of successive attempts of a given
tower.

advantage of being sensitive to correspondences between similar actions performed in differ-
ent attempts, even when they were performed in a different order.

We first sought to determine whether participants reused aspects of their own prior attempts
when reconstructing towers. We calculated the sequence and set dissimilarities between indi-
vidual participants’ consecutive attempts at each tower (Fig. 4B, solid). To estimate the
expected dissimilarity between attempts regardless of individual, we generated a baseline
distribution of dissimilarity values comparing each participant’s second, third, and fourth
attempts at a each tower with prior attempts (i.e., first, second, and third) from a different,
randomly sampled participant. We repeated this process 1000 times, independently and ran-
domly pairing participants for each tower (Fig. 4B, shaded). We found that participants’ pro-
cedures were more similar to their own prior attempts than to other participants’ (p < .001
for each pair of consecutive repetitions, for both sequence and set dissimilarity), suggesting
that participants did reuse aspects of their own prior solutions to reconstruct each tower.

To assess whether participants used increasingly similar procedures across consecutive
attempts, we fit both sequence and set action dissimilarities with a linear mixed-effects model
including fixed effects for attempt pair, the accuracy of the previous attempt, and the dis-
similarity type (sequence or set), as well as random intercepts for tower and participant
(Table S7). We found that attempt pair was negatively related to dissimilarity for both dis-
similarity measures (b = −0.186, t = −7.40, p < .001; Fig. 4B), suggesting that participants
became increasingly consistent in the procedures they used to reconstruct each tower across
repeated attempts. In other words, actions in participants’ later attempts (i.e., attempts 3 and
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4) were more similar to each other than actions in earlier attempts (i.e., 1 and 2). As this
result holds for set as well as sequence dissimilarity, it suggests a genuine increase in the con-
sistency between the actions taken by participants, regardless of the specific order in which
they performed.

A potential explanation for this convergence in procedures is that, as participants uncover
increasingly successful procedures for recreating a tower, they may be less likely to dramat-
ically change their strategy in later attempts. To the extent that accuracy on prior attempts
is related to how much participants alter their procedure in subsequent attempts, we expect
more successful procedures to be more likely to be reused than unsuccessful ones. Consis-
tent with this prediction, we found a strong negative relationship between accuracy on the
most recent attempt and how much they changed their procedure (b = −0.6426, t = −4.054,
p < .001; Fig. 4C), such that participants updated their procedure to a greater extent when
their previous attempt was less successful. Taken together, these results suggest that people
can make efficient use of prior experience to update their approach to solving assembly prob-
lems accordingly.

2.4. Consistency and variability in procedures across individuals

Our results so far show that participants employ increasingly accurate and internally con-
sistent procedures for reconstructing each tower, raising a natural question concerning the
degree to which procedures used by different participants coincide with one another. While
the analyses above suggest some variation in the actions that participants performed, they do
not reveal whether participants were biased toward a small set of solutions for each tower, or
whether they instead discovered a wide variety of completely different solutions. We there-
fore visualized the distribution of procedures used by all participants by constructing a map
of trajectories over intermediate states visited between the start and end of their reconstruc-
tion (Fig. 5), where each state is defined by the shape of the reconstruction up to that point.
Under this definition, reconstructions that are composed of different blocks but share the same
shape (silhouette) are treated as occupying the same state, but are reached by taking distinct
trajectories.

Even on their first attempts, many participants appeared to traverse the same states when
reconstructing each target silhouette (Fig. 6), hinting at broad consistency in the procedures
people use to perform this task. Additional simulations suggested that at most 2.2% of the total
number of possible solutions to each tower were represented in our dataset (i.e., 435 unique
trajectories across all towers out of 19,677 discovered via random sampling). To estimate how
strongly participants were biased toward the same of subsequences, we computed the Gini
index (G) over the number of traversals of each sequence of states across all participants:

G =
n∑

i=1

n∑
j=1

∣∣xi − x j

∣∣ ∗
⎛
⎝2

n∑
i=1

n∑
j=1

x j

⎞
⎠

−1

where n is the number of states and xi and x j represents the number of times states i and
j were visited, respectively. G can be thought of as the average difference in the number of
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Fig. 5. To visualize the set of trajectories taken by participants, we constructed graphs of the intermediate states
visited during a reconstruction attempt. Larger nodes indicate a greater number of participants constructing that
intermediate state, and thicker edges indicate a greater number of participants who transitioned between two world
states with a single block placement. Intermediate states are defined by their outline shape and are independent
of the underlying blocks used to create them. Two distinct trajectories leading to the same state are highlighted in
blue and yellow.

times each subsequence was traversed, normalized by the total number of sequences of that
length (summed twice to account for differences in both directions) to lie in the range [0,1].
It is largest when there are a small number of frequently traversed subsequences and smallest
when all subsequences were traversed an equal number of times.

To estimate how strongly human procedures concentrate on the same sequences of states at
different timescales, we next extracted n-gram representations for all state trajectories, each
defined by n successive states, for 1 ≤ n ≤ 10, then calculated Gn for each of these n-gram
frequency distributions (Fig. 7A). To provide a baseline, we also constructed a random-policy
agent that samples blocks and viable locations (i.e., within silhouette, maintaining stability)
with equal probability. We used this random-policy agent to generate a null distribution of
1000 Gini values, each computed from 105 random-policy agents identified by unique random
seeds. When comparing the mean observed G for human trajectories to this null distribution,
we found that human state trajectories were reliably more concentrated on fewer n-grams
than the random-policy agents, across n-grams of all lengths, for both first attempts (Z-score
= 21.6) and final ones (mean Z-score = 42.7; Fig. 7B). These results show that a policy of
selecting random viable actions is insufficient to explain patterns of human action selection
in this task.
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(a) (b) (c)

Fig. 6. Distribution of state trajectories for first attempts (A), final attempts (B), and an artificial agent (C) employ-
ing a random action-selection policy to reconstruct an example tower. Each trajectory consists of a sequence of
states (nodes) connected by actions (edges), beginning from the initial world state (F1 = 0) and directed upward
toward complete reconstructions (F1 = 1). Node size represents the number of times a state was visited. Edge
thickness represents the number of times a state-state transition was traversed.

Fig. 7. (A) To estimate the degree of bias toward certain trajectories, we extracted all subsequences of states of
a certain length and measured how concentrated construction behavior was on a small number of sequences. (B)
Gini index for n-grams of action sequences in first and final attempts, compared to those of a random-policy agent.
Higher Gini index reflects a smaller number of frequently appearing action sequences. (C) Variability between sets
of actions performed by different participants in first and final attempts. Each line segment represents a different
tower.

Insofar as participants are biased to discover similar solutions over time, we may expect
the Gini index to grow between the first and final attempts. To evaluate this possibility, we
fit human Gini values with a linear mixed-effects model including attempt number, linear
and quadratic terms for n, as well as random intercepts for target towers and participants
(Table S8). This analysis revealed a positive effect of attempt number (b = 0.112, t = 6.02,
p < .001), suggesting that participants converged on a smaller set of procedures across
attempts, and this convergence applied to n-grams over action sequences of all lengths
(Fig. 7B).

Such convergence toward a smaller number of state sequences is consistent with the pos-
sibility that out of all the possible ways of “carving up” each tower into parts, participants
had discovered similar ways of doing so. However, an alternative possibility is that this
convergence was primarily driven by improvement in participants’ ability to build each tower
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more accurately, with more accurate reconstructions being inherently more similar to one
another than less accurate ones. To distinguish these possibilities, we repeated the previous
analysis but only on trials where participants perfectly reconstructed the target tower. We
found that Gini values still increased from the first to the final attempt (b = 0.175, t = 5.68,
p < .001; Table S9), confirming that convergence in trajectories was not simply a conse-
quence of more accurate reconstructions, but also reflected more consistent ways of recon-
structing each tower.

Although such convergence is one signature of using similar procedures, the above analy-
sis is insensitive to cases where two participants reconstruct a silhouette by placing the same
blocks in the same locations, yet place these blocks in a different order. To address this limi-
tation, we examined the distribution of dissimilarities between the sets of actions performed
by different participants, and found that the variance of this distribution was smaller on final
attempts than in first attempts, for all target towers (t (7) = 10.603, p < .001; Fig. 7C). Taken
together, these results indicate that despite the relatively high state-space complexity of this
task, people share systematic biases toward similar solutions even in their first attempts, and
tend to update their strategies across repeated attempts in similar ways, converging on a more
similar set of solutions over time.

3. Discussion

In this paper, we investigated how people reason about physical assembly problems and
update their approach to solving them over time. Specifically, we developed a web-based
environment where participants aimed to reconstruct a set of 2D block towers, and measured
how accurately and quickly they could do so across successive attempts at building each
tower. We found that participants achieved strong performance even on their first attempts
and improved substantially with additional practice. Moreover, our findings suggest that low-
level changes in motor fluency were insufficient to fully explain this improvement. Instead,
improvement was driven by genuine changes in the decisions made by participants about how
to build each tower, with participants updating their procedures to a greater degree when their
prior attempt had been less successful. In addition, although there were many possible ways of
reconstructing each tower, we found that the procedures participants used to initially construct
these towers were strikingly consistent across individuals. Moreover, participants converged
on increasingly similar procedures across attempts, suggesting shared biases toward similar
approaches to solving these assembly problems.

What accounts for the consistency in participants’ assembly behavior, especially given that
for some towers there were as many as several thousand valid ways to reconstruct them? One
possibility is that shared mechanisms for physical understanding lead to similar mental sim-
ulations in planning (Proffitt & Gilden, 1989; Spelke & Kinzler, 2007; Smith & Vul, 2013).
Alternatively, the consistency we see in people’s initial strategies might have been driven more
by participants’ use of simple rules and heuristics (e.g., to build layer by layer; Shelton et al.,
2022). While our random agent baseline simulates the minimum level of consistency expected
under the physical constraints of the task, alternative algorithms could be used to evaluate
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specific hypotheses concerning the source of homogeneity in participants’ solutions. For
example, one possibility is that people build “greedily,” initially prioritizing larger blocks that
cover more of the silhouette, but gradually updating the value of these initial actions in light
of whether their reconstruction was ultimately successful (Barto, Bradtke, & Singh, 1995).

Another possibility is that the consistency we observed reflects a tendency for participants
to decompose these towers into visual parts in similar ways, and that these parts form the
basis for how they then build these towers. Supposing the perceptual organization of com-
plex shapes does constrain how people approach assembly problems, what characterizes the
parts that people favor? Identifying the parts that people use to parse visual objects has long
been a central target for classical theories of perceptual organization, which have emphasized
spatial and shape-based cues to parthood (Hoffman & Richards, 1984; Palmer, 1977; Schyns
& Murphy, 1994; Tversky & Hemenway, 1984; Wertheimer, 1923). Building on this tradi-
tion, a related notion is that the parts people use to parse a complex visual object are those
that are easy to identify and remember (e.g., according to Gestalt or other principles), and
can be used to form more compressed representations of other, similar objects (Biederman,
1987). In other words, people confronting an assembly problem may invoke a mental library
containing these useful part concepts to imagine a compact motor program that could be exe-
cuted to generate the target object from those parts (Ellis et al., 2020; Lake, Salakhutdinov,
& Tenenbaum, 2015; Tian, Ellis, Kryven, & Tenenbaum, 2020; Wong et al., 2022). On this
view, the value placed on parts that appear in different objects suggests a route by which prior
experience with specific objects guides the kinds of representational primitives that emerge.
Future studies could test these ideas by manipulating the prevalence of different parts in the
set of objects people are asked to build, and measuring the impact of exposure to these parts
on the assembly procedures they converge upon.

A major focus of the current study was on how practice building an object affects a per-
son’s approach to building it later. To what degree does such building experience not only
affect how people build it later, but also its underlying mental representation, such that they
perceive or remember it differently? This question has been explored in prior work investigat-
ing other visual production modalities, such as drawing (Fan, Yamins, & Turk-Browne, 2018;
Wammes, Meade, & Fernandes, 2016) and handwriting (James, 2010, 2017). For example, in
one recent study, participants who repeatedly produced drawings of similar objects (e.g., beds
and chairs) were better able to discriminate them in a subsequent categorization task, relative
to control objects that were not repeatedly drawn (Fan et al., 2018). Moreover, this drawing
practice was accompanied by changes in patterns of connectivity between visual and parietal
cortex, suggesting a potential neural substrate by which experience improves people’s abil-
ity to transform the contents of a perceptual representation into representational actions (Fan
et al., 2020). A promising direction for future work is to test the degree to which practice plays
a similar role in the context of physical assembly, thus providing a measure of how strongly
these production-driven learning consequences generalize beyond the domain of drawing and
handwriting (Schwartenbeck et al., 2021). Insofar as they do, such findings would lend sup-
port to the notion that, at least in some contexts, how people internally represent an object
is characterized by a fundamental duality—its correspondence to a static entity with certain
perceptual properties, but also to a generative process that gives rise to it (Fan et al., 2018;
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Fernandes, Wammes, & Meade, 2018; James, 2017; Lake et al., 2015). Regardless, the results
of such studies will be invaluable for advancing our mechanistic understanding of how active
and constructive behaviors relate to learning more generally (Chi & Wylie, 2014).

One limitation of our study as it pertains to real-world physical assembly is the focus on
building 2D block towers in a virtual environment. While our virtual building environment
retained some key aspects of building objects in the physical world, including the relevance
of gravity and friction for reasoning about physical stability, there were many other aspects
that were not retained in this environment, such as depth information and the biomechanical
details governing how a person would actually need to grip a 3D object in order to maneuver
it into place. Future work exploring physical assembly could overcome these drawbacks by
using recently developed 3D virtual environments to investigate more realistic forms of inter-
action (Gan et al., 2020, 2021) and could further connect with research in robotics exploring
how data from sight and touch might be integrated in order to plan complex actions in the real
world (Erdogan, Yildrim, & Jacobs, 2014; Fazeli et al., 2019; Mason, 2018). The generality
and scope of our findings might also be extended by using a larger and more diverse set of
towers, which would support investigation of the relationship between various properties of
these towers (e.g., size, presence of “holes”) and how difficult they are to build. Moreover,
in order to test the specific hypotheses raised earlier concerning the use of hierarchical rep-
resentations during physical assembly, it will be advantageous to use more complex objects
in future studies that more clearly support hierarchical decomposition (McCarthy, Hawkins,
Wang, Holdaway, & Fan, 2021; Wong et al., 2022). Another limitation of the current study
is the focus on accurate reconstruction of existing physical structures, rather than reason-
ing about how to build new ones that satisfy more abstract design criteria, such as the need
to provide “shelter” for another object (Bapst et al., 2019). Expanding the suite of physical
assembly tasks to include these more open-ended design challenges may provide more direct
insight into how humans deploy their general-purpose understanding of how the physical
world works to create new things.

In sum, our paper introduces and validates an approach for investigating how people learn
how to solve physical assembly problems, providing a window into how physical reasoning
and planning interact to achieve specific behavioral goals. Such tools are especially valuable
for advancing mechanistic theories of cognition because they support large-scale measure-
ment of complex human behaviors and the evaluation of candidate cognitive models within
the same environment. We hope that our findings will inspire further development of mecha-
nistic models that display these and other richly complex behaviors, and direct comparison of
these models’ behavior to that of humans. In the long run, strong alignment between empirical
studies of human and model behavior may lead to both more robust and human-like artificial
intelligence, as well as a deeper understanding of human cognition.
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Éltető, N., & Dayan, P. (2023). Habits of mind: Reusing action sequences for efficient planning. arXiv preprint
arXiv:2306.05298.

Erdogan, G., Yildrim, I., & Jacobs, R. A. (2014). Transfer of object shape knowledge across visual and haptic
modalities. In Proceedings of the Annual Meeting of the Cognitive Science Society, volume 36.

Fan, J. E., Wammes, J. D., Gunn, J. B., Yamins, D. L., Norman, K. A., & Turk-Browne, N. B. (2020). Relat-
ing visual production and recognition of objects in human visual cortex. Journal of Neuroscience, 40(8),
1710–1721.

Fan, J. E., Yamins, D. L., & Turk-Browne, N. B. (2018). Common object representations for visual production and
recognition. Cognitive Science, 42(8), 2670–2698.

Fazeli, N., Oller, M., Wu, J., Wu, Z., Tenenbaum, J. B., & Rodriguez, A. (2019). See, feel, act: Hierarchical
learning for complex manipulation skills with multisensory fusion. Science Robotics, 4(26), eaav3123.

Fernandes, M. A., Wammes, J. D., & Meade, M. E. (2018). The surprisingly powerful influence of drawing on
memory. Current Directions in Psychological Science, 27(5), 302–308.

Gan, C., Schwartz, J., Alter, S., Mrowca, D., Schrimpf, M., Traer, J., De Freitas, J., Kubilius, J., Bhandwaldar, A.,
Haber, N., Sano, M., Kim, K., Wang, E., Lingelbach, M., Curtis, A., Bear, D., Gutfreund, D., Cox, D., Torralba,
A., DiCarlo, J., Tenenbaum, J., McDermott, J., & Yamins, D. (2020). ThreeDworld: A platform for interactive
multi-modal physical simulation. arXiv preprint arXiv:2007.04954.

Gan, C., Zhou, S., Schwartz, J., Alter, S., Bhandwaldar, A., Gutfreund, D., Yamins, D. L., DiCarlo, J. J.,
McDermott, J., Torralba, A., & Tenebaum, J. (2021). The threeDworld transport challenge: A visually guided
task-and-motion planning benchmark for physically realistic embodied AI. arXiv preprint arXiv:2103.14025.

Gobet, F., & Simon, H. A. (1998). Expert chess memory: Revisiting the chunking hypothesis. Memory, 6(3),
225–255.

Hamrick, J. B., Allen, K. R., Bapst, V., Zhu, T., McKee, K. R., Tenenbaum, J. B., & Battaglia, P. W. (2018).
Relational inductive bias for physical construction in humans and machines. arXiv preprint arXiv:1806.01203.

Hamrick, J. B., Smith, K. A., Griffiths, T. L., & Vul, E. (2015). Think again? The amount of mental simulation
tracks uncertainty in the outcome. In CogSci. Citeseer.

Hegarty, M. (2004). Mechanical reasoning by mental simulation. Trends in Cognitive Sciences, 8(6), 280–285.
Hoffman, D. D., & Richards, W. A. (1984). Parts of recognition. Cognition, 18(1–3), 65–96.
Huys, Q. J., Eshel, N., O’Nions, E., Sheridan, L., Dayan, P., & Roiser, J. P. (2012). Bonsai trees in your head: How

the pavlovian system sculpts goal-directed choices by pruning decision trees. PLoS Computational Biology,
8(3), e1002410.

Huys, Q. J., Lally, N., Faulkner, P., Eshel, N., Seifritz, E., Gershman, S. J., Dayan, P., & Roiser, J. P. (2015).
Interplay of approximate planning strategies. Proceedings of the National Academy of Sciences of the United
States of America, 112(10), 3098–3103.

James, K. H. (2010). Sensori-motor experience leads to changes in visual processing in the developing brain.
Developmental Science, 13(2), 279–288.

James, K. H. (2017). The importance of handwriting experience on the development of the literate brain. Current
Directions in Psychological Science, 26(6), 502–508.

Kirsh, D. (1995). The intelligent use of space. Artificial Intelligence, 73(1–2), 31–68.
Kubricht, J. R., Holyoak, K. J., & Lu, H. (2017). Intuitive physics: Current research and controversies. Trends in

Cognitive Sciences, 21(10), 749–759.
Kurth-Nelson, Z., Behrens, T., Wayne, G., Miller, K., Luettgau, L., Dolan, R., Liu, Y., & Schwartenbeck, P. (2023).

Replay and compositional computation. Neuron, 111(4), 454–469.
Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic

program induction. Science, 350(6266), 1332–1338.
Maglio, P. P., & Kirsh, D. (1996). Epistemic action increases with skill. In Proceedings of the 18th Annual Con-

ference of the Cognitive Science Society (pp. 391–396).
Mason, M. T. (2018). Toward robotic manipulation. Annual Review of Control, Robotics, and Autonomous Sys-

tems, 1, 1–28.
McCarthy, W. P., Hawkins, R. D., Wang, H., Holdaway, C., & Fan, J. E. (2021). Learning to communicate about

shared procedural abstractions. arXiv preprint arXiv:2107.00077.

 15516709, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13397 by Stanford U

niversity, W
iley O

nline L
ibrary on [28/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



W. P. McCarthy, D. Kirsh, J. E. Fan / Cognitive Science 47 (2023) 19 of 20

McCloskey, M. (1983). Intuitive physics. Scientific American, 248(4), 122–131.
Palmer, S. E. (1977). Hierarchical structure in perceptual representation. Cognitive Psychology, 9(4), 441–474.
Proffitt, D. R., & Gilden, D. L. (1989). Understanding natural dynamics. Journal of Experimental Psychology:

Human Perception and Performance, 15(2), 384.
Sanborn, A. N., Mansinghka, V. K., & Griffiths, T. L. (2013). Reconciling intuitive physics and Newtonian

mechanics for colliding objects. Psychological Review, 120(2), 411.
Schwartenbeck, P., Baram, A., Liu, Y., Mark, S., Muller, T., Dolan, R., Botvinick, M., Kurth-Nelson, Z., &

Behrens, T. (2021). Generative replay for compositional visual understanding in the prefrontal-hippocampal
circuit. bioRxiv.

Schwartz, D. L., & Black, T. (1999). Inferences through imagined actions: Knowing by simulated doing. Journal
of Experimental Psychology: Learning, Memory, and Cognition, 25(1), 116.

Schyns, P. G., & Murphy, G. L. (1994). The ontogeny of part representation in object concepts. Psychology of
Learning and Motivation, 31, 305–349.

Shelton, A. L., Davis, E. E., Cortesa, C. S., Jones, J. D., Hager, G. D., Khudanpur, S., & Landau, B. (2022). Char-
acterizing the details of spatial construction: Cognitive constraints and variability. Cognitive Science, 46(1),
e13081.

Sheridan, H., & Reingold, E. M. (2017). Chess players’ eye movements reveal rapid recognition of complex visual
patterns: Evidence from a chess-related visual search task. Journal of Vision, 17(3), 4.

Smith, K. A., Battaglia, P. W., & Vul, E. (2018). Different physical intuitions exist between tasks, not domains.
Computational Brain & Behavior, 1(2), 101–118.

Smith, K. A., & Vul, E. (2013). Sources of uncertainty in intuitive physics. Topics in Cognitive Science, 5(1),
185–199.

Solway, A., & Botvinick, M. M. (2012). Goal-directed decision making as probabilistic inference: A computa-
tional framework and potential neural correlates. Psychological Review, 119(1), 120.

Solway, A., & Botvinick, M. M. (2015). Evidence integration in model-based tree search. Proceedings of the
National Academy of Sciences, 112(37), 11708–11713.

Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10(1), 89–96.
Tian, L., Ellis, K., Kryven, M., & Tenenbaum, J. (2020). Learning abstract structure for drawing by efficient motor

program induction. Advances in Neural Information Processing Systems, 33, 2686–2697.
Tversky, B., & Hemenway, K. (1984). Objects, parts, and categories. Journal of Experimental Psychology: Gen-

eral, 113(2), 169.
Van Harreveld, F., Wagenmakers, E.-J., & Van Der Maas, H. L. (2007). The effects of time pressure on chess

skill: An investigation into fast and slow processes underlying expert performance. Psychological Research,
71, 591–597.

Van Opheusden, B., Galbiati, G., Bnaya, Z., Li, Y., & Ma, W. J. (2017). A computational model for decision tree
search. In CogSci.

van Opheusden, B., Kuperwajs, I., Galbiati, G., Bnaya, Z., Li, Y., & Ma, W. J. (2023). Expertise increases planning
depth in human gameplay. Nature, 618, 1–6.

van Opheusden, B., & Ma, W. J. (2019). Tasks for aligning human and machine planning. Current Opinion in
Behavioral Sciences, 29, 127–133.

Wammes, J. D., Meade, M. E., & Fernandes, M. A. (2016). The drawing effect: Evidence for reliable and robust
memory benefits in free recall. Quarterly Journal of Experimental Psychology, 69(9), 1752–1776.

Wertheimer, M. (1923). Laws of organization in perceptual forms. Psycologische Forschung, 4.
Wolfgang, C. H., Stannard, L. L., & Jones, I. (2001). Block play performance among preschoolers as a predictor

of later school achievement in mathematics. Journal of Research in Childhood Education, 15(2), 173–180.
Wong, C., McCarthy, W. P., Grand, G., Friedman, Y., Tenenbaum, J. B., Andreas, J., Hawkins, R. D., & Fan, J. E.

(2022). Identifying concept libraries from language about object structure. arXiv preprint arXiv:2205.05666.
Xia, L., & Collins, A. G. E. (2020). Temporal and state abstractions for efficient learning, transfer and composition

in humans. bioRxiv.

 15516709, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.13397 by Stanford U

niversity, W
iley O

nline L
ibrary on [28/12/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



20 of 20 W. P. McCarthy, D. Kirsh, J. E. Fan / Cognitive Science 47 (2023)

Supporting Information

Additional supporting information may be found
online in the Supporting Information section at the end
of the article.

Table S1 Parameter estimates for linear mixed effects
model used to predict F1 score from attempt (first and
final) and condition.

Table S2 Parameter estimates for linear mixed effects
model used to predict number of blocks from attempt
(first and final) and condition.

Table S3 Parameter estimates for linear mixed effects
model used to predict number of blocks from attempt
(first and final) and condition, excluding trials in which
the trial ended early due to a block falling.

Table S4 Parameter estimates for linear mixed effects
model used to predict the mean time (seconds) between
block placements from attempt (first and final) and
condition.

Table S5 Parameter estimates for linear mixed effects
model used to predict preparation time from attempt (first
and final) and condition.

Table S6 Parameter estimates for linear mixed effects
model used to predict total build time (in seconds) from
attempt (first and final), condition, and variable indicating
whether the reconstruction was perfect.

Table S7 Parameter estimates for linear mixed effects
model used to predict action dissimilarity from attempt
pair, dissimilarity measure, and F1 score of the previ-
ous attempt.

Table S8 Parameter estimates for linear model used to
predict difference in Gini coefficients from attempt (first
and final) and length of action sequence considered (lin-
ear and quadratic) (all trials). df = 155.

Table S9 Parameter estimates for linear model used
to predict difference in Gini coefficients from attempt
(first and final) and length of action sequence consid-
ered (linear and quadratic) (perfect reconstructions only).
df = 156.
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