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Abstract
The ability to build a wide array of physical struc-
tures, from sand castles to skyscrapers, is a hall-
mark of human intelligence. What computational
mechanisms enable humans to reason about how
such structures are built? Here we conduct an
empirical investigation of how people solve chal-
lenging physical assembly problems and update
their policies across repeated attempts. Partici-
pants viewed silhouettes of 8 unique towers in
a 2D virtual environment simulating rigid-body
physics, and aimed to reconstruct each one using
a fixed inventory of rectangular blocks. We found
that people learned to build each target tower more
accurately across repeated attempts, and that these
gains reflect both group-level convergence upon
a smaller set of viable policies, as well as error-
dependent updating of each individual’s policy.
Taken together, our study provides a novel bench-
mark for evaluating how well algorithmic models
of physical reasoning and planning correspond to
human behavior.

1. Introduction
The ability to build a wide array of physical structures, from
sand castles to skyscrapers, is a hallmark of modern human
intelligence. What computational mechanisms enable hu-
mans to reason about how such structures are built? Here
we examine how people learn to “reverse-engineer” exist-
ing structures — that is, infer a sequence of actions that
can be used to recreate them from simpler components.
Specifically, we investigate how people make use of prior
experience to update their policies across repeated attempts.
Overall, our paper presents a novel benchmark task, human
dataset, and set of evaluation metrics for AI construction
agents. Our specific contributions are: (1) a web-based
task environment for physical assembly, enabling scalable
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and dense measurement of human construction behavior;
(2) a dataset containing 2,520 construction attempts across
105 human participants, including 22,793 actions; and (3) a
quantitative evaluation of how humans reason about phys-
ical construction problems, update their policies based on
prior performance, and converge upon similar solutions over
time.

2. Related Work
2.1. Physical reasoning

Our paper builds on prior work on both classic (McCloskey,
1983) and contemporary (Battaglia et al., 2013) work inves-
tigating how humans reason about the properties of physical
objects and their relationships, a suite of abilities known as
intuitive physics. While many tasks in this literature involve
passive judgments about physical scenes, a promising new
direction is to consider tasks that involve active interventions
on physical systems to achieve various goals (Allen et al.,
2019; Hamrick et al., 2018). Our specific approach draws in-
spiration from prior work in cognitive science (Cortesa et al.,
2018) and AI (Bapst et al., 2019; Jones et al., 2019) that
has examined physical construction behavior. In particular,
our approach takes inspiration from prior work investigating
how such active interventions can be beneficial for learning
(Gureckis & Markant, 2012), but in the context of physical
reasoning tasks.

2.2. Planning

Our paper is also informed by recent advances in theories of
human planning that highlight the pervasive role of mental
simulation in guiding human sequential decision making
(Solway & Botvinick, 2015; 2012; Daw et al., 2011), com-
bined with reasonable assumptions about the cognitive costs
of conducting mental simulations (Callaway et al., 2018;
Hamrick et al., 2015). However, the generalizability of
classic theories of planning to construction behavior may
be limited by the historically narrow focus on tasks with
low state-space complexity (van Opheusden et al., 2017)
and abstract action spaces (Solway & Botvinick, 2015) far
removed from the physical environment. Moreover, these
theories do not address our core question of how people
make efficient use of prior task experience to quickly update
suboptimal plans (Hamrick et al., 2020).
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Figure 1. (A) Schematic of task display. The left window contained a target silhouette, and the right contained a building environment. (B)
For each participant the 8 target towers were randomly assigned to the repeated and control conditions. (C) Reconstruction accuracy
across build attempts.

3. Approach
3.1. Task environment

We developed a web-based gridworld environment (15x13)
in which people could construct various block towers under
simulated rigid-body physics (Matter.js). On each trial
of our Silhouette task, participants aimed to reconstruct
specific target towers in less than 60 seconds using a fixed
inventory of rectangular blocks. Only the silhouettes of
the towers were provided, requiring participants to infer
which blocks to use, where to place them, and in what order
(Fig. 1A). After the placement of each block, participants’
towers became subject to gravity. Thus, if their tower was
not sufficiently stable, single blocks or even the entire tower
could fall over.

3.2. Silhouette dataset and experimental design

We randomly sampled a large number of stable configu-
rations of 8-16 blocks, then manually selected 8 of these
towers to create silhouettes with many valid solutions. For
each participant, the 8 towers were randomly split into 2
sets of 4: a repeated set and a control set (Figure 1B). Each
tower in the repeated set was attempted 4 times, interleaved
among other towers. Each tower in the control set was
attempted 2 times, once at the beginning and once at the
end of the experiment. In subsequent comparisons between
the first and final attempt for each tower, we combine data
from repeated and control sets. In analyses of fine-grained
changes in behavior across successive attempts, we restrict
our analysis to repeated sets.

3.3. Human participants

105 participants, who provided informed consent and were
recruited via Amazon Mechanical Turk, completed the task.

3.4. Representing states and actions

We define the current state as the silhouette of the current
reconstruction. Under this definition, reconstructions that
are composed of different blocks but share the same sil-
houette are treated as occupying the same state. A state
trajectory consists of the sequence of all states a particu-
lar participant visited between the start and end of their
reconstruction. We define actions as individual block
placements, represented by 4-vectors [x, y, w, h], where
0 ≤ x ≤ 15, 0 ≤ y ≤ 13 represents the coordinates
of the bottom-left corner of the current block and where
(w, h) ∈ {(1, 2), (2, 1), (2, 2), (2, 4), (4, 2)} represent its
width and height, respectively.

4. Experiment
4.1. Improvement in human reconstruction accuracy

We used the F1 score to measure reconstruction accuracy:

F1 =
2

(recall−1 + precision−1)

which reflects how well participants’ reconstructions coin-
cided with the target silhouette, and lies in the range [0, 1].
To evaluate changes in accuracy between the first and fi-
nal attempts, we fit a linear mixed-effects model predicting
F1 score from build attempt (first, final) and condition (re-
peated, control) as fixed effects, including random intercepts
for participant and tower. This analysis revealed a strong
effect of build attempt (b = 0.0759, t = 6.994, p < 0.001),
showing that participants learned to reconstruct towers more
accurately over time (Figure 1C). We found no effect of
condition, and no interaction between attempt and condi-
tion, suggesting that the improvement primarily reflected
task-general, rather than tower-specific learning.
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Figure 2. State trajectories for an example target tower for human participants’ (A) first attempts, (B) final attempts, and (C) the
random-policy agent. Each trajectory consists of a sequence of states (nodes) connected by actions (edges), beginning from the initial
world state (F1 = 0) and directed upwards toward complete reconstructions (F1 = 1). Node size represents the number of times a state
was visited. Edge thickness represents the number of times a state-state transition was traversed.

4.2. Systematicity in human construction policies

Even in the first attempt, many participants appeared to
traverse the same states when reconstructing each target
silhouette (Fig. 2A), hinting at broad consistency in the
policies humans use to perform this task. To rigorously
quantify these systematic biases toward certain states, we
computed the Gini index (G) over the frequency of visits to
each state across all participants:

G =

n∑
i=1

n∑
j=1

|xi − xj | ∗ (2
n∑

i=1

n∑
j=1

xj)
−1

To estimate how strongly human policies concentrate on the
same sequences of states at different timescales, we next ex-
tracted n-gram representations for all state trajectories, each
defined by n successive states, for 1 ≤ n ≤ 10, then calcu-
lated Gn for each of these n-gram frequency distributions.
To provide a baseline, we also constructed a random-policy
agent that samples blocks and viable locations (i.e., within
silhouette, maintaining stability) with equal probability. We
used this random-policy agent to generate a null distribu-
tion of 1000 Gini values, each computed from 105 random-
policy agents identified by unique random seeds. When
comparing the mean observed G for human trajectories to
this null distribution, we found that human state trajectories
were reliably more concentrated on fewer n-grams than the
random-policy agent, across n-grams of all lengths, for both
first attempts (Z-score = 21.6) and final ones (mean Z-score
= 42.7; Fig. 3A).

4.3. Policy convergence between individuals over time

Insofar as human participants are biased to discover similar
solutions over time, we may expect the Gini index to grow
between the first and final attempts. To evaluate this possi-
bility, we fit human Gini coefficients with an LME model

including attempt number and linear and quadratic terms
for n, as well as random intercepts for target towers and
participants (Figure 3A). This analysis revealed that there
was lower overall convergence on longer sequences (i.e.,
larger n) than shorter sequences (b = −0.0454, t = −21.3,
p < 0.001), as expected. Importantly, it also revealed a
positive effect of attempt number (b = 0.112, t = 6.02,
p < 0.001), suggesting that human participants tended to
converge on increasingly similar policies over time.

Although convergence on the same sequences of states is
one signature of having similar policies, the above analysis
is insensitive to cases where two participants reconstruct
a silhouette by placing the same blocks in the same loca-
tions, yet only have first and final world states in common.
To address this limitation, we defined a measure of action
dissimilarity that compares sequences of actions while disre-
garding the states in which they are performed. For a pair of
action sequences, we define the “raw” action dissimilarity as
the mean Euclidean distance between corresponding pairs of
[x, y, w, h] action vectors (Fig. 3C, light). As this measure
compares the dissimilarity of sequences on an action-by-
action basis, it is brittle with respect to the sequence in
which they are performed. We therefore also obtained a
“transformed” action dissimilarity between sets of actions,
using the Kuhn-Munkres algorithm to identify the one-to-
one mapping between actions minimizing the Euclidean
distance between them (Fig. 3C, dark). We found that over-
all variability in the sets of actions performed was smaller
on final attempts than on first attempts, for all target towers
(t(7) = 10.603, p < 0.001; Fig. 3B).

Taken together, these results suggest that human participants
converge on similar policies over time, indicating shared
biases when reasoning about such construction tasks and
updating their strategies.
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Figure 3. (A) Gini index for state trajectories for human participants in first and final attempts, compared to that of a random-policy agent.
(B) Variability between participants in sets of actions performed on first and final attempts. Each line segment represents a different
target tower. (C) Magnitude of change in action sequences (raw) and sets of actions (transformed) across successive build attempts. (D)
Magnitude of change in sets of actions as a function of accuracy (F1) on previous attempt, for each pair of successive attempts.

4.4. Policy convergence within individuals over time

If human participants converged upon internally consistent
ways to reconstruct each target tower, we would predict
that action dissimilarity between successive pairs of at-
tempts (e.g., 1st-2nd) would decrease over time. We fit
both raw and transformed action dissimilarities with a LME
model including fixed effects for attempt pair, the accuracy
of the earlier attempt, and the dissimilarity type (raw or
transformed), as well as random intercepts for target tower
and participant. Consistent with our prediction, we found
that Euclidean distance is negatively related to attempt pair
(b = −0.186, t = −7.40, p < 0.001; Figure 3C). We also
found that transformed dissimilarities were smaller than raw
ones (b = −0.482, t = −2.96, p = 0.00315), suggesting
that participants updated policies in a way that achieved a
similar outcome, even if they performed actions in a some-
what different sequence across build attempts.

4.5. Human policy updating is error dependent

To what extent is the human policy updating sensitive to
errors made on previous attempts? Using the same linear
model from the previous section, we found a strong nega-
tive relationship between accuracy on the most recent build
attempt and how much they changed which actions they per-
formed (b = −0.6426, t = −4.054, p < 0.001), such that
participants updated their policy more when their previous
attempt was less successful. Taken together, these results
suggest that human participants make efficient use of prior
experience to update their policies accordingly (Figure 3D).

5. Discussion
In this paper, we introduce a novel benchmark task for mea-
suring how humans and AI construction agents reason about
challenging physical assembly problems and update their
policies across repeated attempts. Our quantitative evalua-
tion of human behavior on this task revealed a large degree
of consistency in policies used by different individuals, even
on their first attempt. Additionally, we found that people
converge on increasingly similar solutions over time, which
represent a tiny fraction of all possible solutions, suggesting
shared biases on such tasks. Moreover, our data suggest that
people rapidly update their policies based on prior perfor-
mance, even after one or a few attempts.

A key open question concerns the source of the systematic-
ity we see in human strategies for solving these physical
reasoning problems. Shared prior experience with a variety
of other physical reasoning and planning tasks may play a
crucial role, and understanding how humans transfer such
broad experiences to new tasks may be critical for develop-
ing AI agents that learn as flexibly as humans do.

The highly sample-efficient learning we observed in humans
differs starkly from the learning in even the most sophis-
ticated current deep reinforcement learning agents, which
require substantial amounts of experience to achieve good
performance on similar tasks. Our immediate next steps
will be to directly evaluate how well current AI construc-
tion agents (Bapst et al., 2019) emulate human behavioral
data on the same tasks and metrics. Overall, we hope our
study will spur progress at the intersection of cognitive sci-
ence and AI to advance computational theories of human
planning and physical reasoning.



Rapid policy updating in human physical construction

6. Acknowledgements
We would like to thank David Kirsh and members of the
Cognitive Tools Lab for helpful discussion.

All code and materials available at:
https://github.com/cogtoolslab/

block_construction

References
Allen, K. R., Smith, K. A., and Tenenbaum, J. B. The

tools challenge: Rapid trial-and-error learning in physical
problem solving. arXiv preprint arXiv:1907.09620, 2019.

Bapst, V., Sanchez-Gonzalez, A., Doersch, C., Stachenfeld,
K. L., Kohli, P., Battaglia, P. W., and Hamrick, J. B. Struc-
tured agents for physical construction. arXiv preprint
arXiv:1904.03177, 2019.

Battaglia, P. W., Hamrick, J. B., and Tenenbaum, J. B. Sim-
ulation as an engine of physical scene understanding.
Proceedings of the National Academy of Sciences, 110
(45):18327–18332, 2013.

Callaway, F., Lieder, F., Das, P., Gul, S., Krueger, P. M.,
and Griffiths, T. A resource-rational analysis of human
planning. In CogSci, 2018.

Cortesa, C. S., Jones, J. D., Hager, G. D., Khudanpur, S.,
Landau, B., and Shelton, A. L. Constraints and develop-
ment in children’s block construction. In CogSci, 2018.

Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., and
Dolan, R. J. Model-based influences on humans’ choices
and striatal prediction errors. Neuron, 69(6):1204–1215,
2011.

Gureckis, T. M. and Markant, D. B. Self-directed learning:
A cognitive and computational perspective. Perspectives
on Psychological Science, 7(5):464–481, 2012.

Hamrick, J. B., Smith, K. A., Griffiths, T. L., and Vul, E.
Think again? the amount of mental simulation tracks
uncertainty in the outcome. In CogSci. Citeseer, 2015.

Hamrick, J. B., Allen, K. R., Bapst, V., Zhu, T., McKee,
K. R., Tenenbaum, J. B., and Battaglia, P. W. Relational
inductive bias for physical construction in humans and
machines. arXiv preprint arXiv:1806.01203, 2018.

Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Pfaff, T.,
Weber, T., Buesing, L., and Battaglia, P. W. Combining
q-learning and search with amortized value estimates.
International Conference on Learning Representations,
2020.

Jones, J., Hager, G. D., and Khudanpur, S. Toward computer
vision systems that understand real-world assembly pro-
cesses. In 2019 IEEE Winter Conference on Applications
of Computer Vision (WACV), pp. 426–434. IEEE, 2019.

McCloskey, M. Intuitive physics. Scientific American, 248
(4):122–131, 1983.

Solway, A. and Botvinick, M. M. Goal-directed decision
making as probabilistic inference: a computational frame-
work and potential neural correlates. Psychological Re-
view, 119(1):120, 2012.

Solway, A. and Botvinick, M. M. Evidence integration in
model-based tree search. Proceedings of the National
Academy of Sciences, 112(37):11708–11713, 2015.

van Opheusden, B., Galbiati, G., Bnaya, Z., Li, Y., and Ma,
W. J. A computational model for decision tree search. In
CogSci, 2017.

https://github.com/cogtoolslab/block_construction
https://github.com/cogtoolslab/block_construction
https://github.com/cogtoolslab/block_construction
https://github.com/cogtoolslab/block_construction

