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Abstract

Many real-world tasks require agents to coordinate their behavior to achieve shared
goals. Here we investigate how humans use natural language to collaboratively
solve physical assembly problems more effectively over time. Human participants
were paired up in an online environment to reconstruct scenes containing a pair
of block towers. Each participant was assigned either the role of Architect or
Builder: the Architect provided assembly instructions to the Builder, who aimed to
reconstruct each scene as accurately as possible. We found that Architects provided
increasingly concise instructions to Builders across repeated attempts on each pair
of towers, reflecting the use of more abstract referring expressions that captured
the hierarchical structure of each scene (i.e., tower-level expressions subsuming
block-level ones). Moreover, our data suggest that different pairs of participants
converged on different expressions, suggesting that multiple viable solutions exist
for mapping tokens of natural language to object configurations. Taken together,
our paper presents an empirical paradigm, human dataset, and set of evaluation
metrics that can be used to guide the development of artificial agents that emulate
human-like compositionality and abstraction.

1 Introduction

From advanced manufacturing to food preparation, many real-world tasks require multiple agents to
coordinate their behavior to succeed. In order to coordinate effectively, collaborators must share a
common underlying representation of their task and goals, including basic representations of objects
and actions in the environment. Often, shared representations are not supplied to agents in advance,
or must be re-negotiated on the fly as each individual agent acquires new expertise about the task
structure. In other words, these tasks demand sustained ad hoc coordination [10, 22, 27].

One promising solution to the problem of ad hoc coordination is the ability to explicitly communicate
using natural language [23, 17, 25, 24]. Yet, communication protocols also require some degree of
coordination and adaptation over the course of interaction, as emphasized in psycholinguistics [6, 11]
and natural language processing [12]. How can agents simultaneously coordinate their underlying
representations of objects and the way they talk about them?
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Figure 1: Collaborative assembly task. (A) The Architect was shown a target scene and provided
assembly instructions to the Builder, who aimed to reconstruct it. (B) Each scene was composed of
two towers, which were each composed of four domino-shaped blocks. (C) Example messages from
first and final repetitions of a tower pair, showing the emergence of expressions referring to towers.

In this paper, we approach these questions by examining how human partners successfully manage to
coordinate in a physical assembly domain requiring ad hoc adaptation for both object representations
and language. In particular, we explore the notion that humans exploit shared expectations about
the hierarchical organization of physical objects to develop more abstract referring expressions that
reflect this hierarchical structure. Our paper presents an empirical paradigm, human dataset, and
set of evaluation metrics that can be used to guide the development of artificial agents that emulate
human-like compositionality and abstraction.

2 Related Work

Our paper builds on prior work in cognitive science and natural language processing that has
used cooperative language games to investigate the emergence of shared task representations, or
conventions. This work has examined how words acquire the ability to refer to objects through
repeated multi-agent interactions [6, 12, 16]. A key theme in this literature concerns the importance
of compositionality in emergent communication protocols [21, 15, 20]. Rather than expressing each
intended meaning with a distinct word, agents may produce multi-word utterances that derive their
meanings from their component parts. Compositionality may be especially important in domains
where the space of possible meanings is highly structured yet variable, as in the case of providing
instructions to assemble towers from blocks [28, 29]. Our study departs from this prior work by
emphasizing how agents may learn to compose referring expressions at higher levels of abstraction
over time as they acquire more evidence about the structure of objects and their partner’s behavior.

Our paper also draws upon a large literature in both human and computer vision that has investigated
constraints on the learning of hierarchical representations for objects [8, 1, 14, 19] and scenes
[7, 13, 9, 5, 26, 3]. Such object-centric representations are especially valuable because of their ability
to support high-level visual reasoning and planning, including the ability to compose shape primitives
to form more complex objects during physical assembly [2, 18]. Our study leverages insights from
this prior work to investigate how human collaborators develop shared object-level abstractions
through social interaction.

3 Task

Human participants (N=98 participants; 48 dyads) were recruited from Amazon Mechanical Turk
and automatically paired up an interactive web environment to perform a collaborative assembly
task (Fig. 1A). At the outset, each participant was assigned either the role of Architect or Builder
and proceeded with their partner through a series of twelve target scenes containing block towers.
Critically, only the Architect was shown the target scene, and only the Builder was able to place blocks
in the environment. To succeed, the Architect needed to send step-by-step assembly instructions in
natural language, which the Builder used to reconstruct the target scene as accurately as possible. At
the beginning of each trial, the Architect was presented with a target scene and the Builder with an
empty environment. They then took turns: On the Architect’s turn, they could send a single set of
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instructions containing a maximum of 100 characters. On the Builder’s turn, they could place one
or more blocks in the environment before ending their turn. Blocks could be placed anywhere so
long as they were supported from beneath, but could not be moved once placed. The Builder was
unable to send messages to the Architect, although the Architect could see the placement of each
block in real-time. Once eight blocks had been placed, both participants received feedback about the
mismatch between the target scene and reconstruction before advancing to the next trial.

Each scene was composed of two block towers that appeared side by side, consisting of two horizontal
and two vertical domino-shaped blocks (Fig. 1B). There were three unique towers, and each unique
combination of these towers appeared four times across a series of four repetition blocks, in which
each combination appeared exactly once in a randomized order. All towers appeared in both the left
and right positions an equal number of times, such that there was no statistical association between
the appearance of a given tower and its location within the scene nor the tower it was paired with.

4 Results
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Figure 2: (A) Change in reconstruction accuracy
across repetitions. B: Change in mean number
of words used on each trial across repetitions.

Although each interaction only spanned twelve
trials, we hypothesized that human dyads
would be able to take advantage of this small
amount of experience to rapidly develop shared
task representations, manifesting in increasingly
successful and efficient collaboration over time.

4.1 Successful
collaborative assembly throughout interaction

Given that the focus of our study was on changes
in the language produced by Architects to achieve
accurate reconstructions, we sought to first verify
that human dyads were able to successfully
perform the assembly task. We found that even
on their initial reconstructions, they were highly
accurate, with an average F1 score of 0.876
(95% bootstrapped CI:[0.854, 0.898]), roughly
equivalent to having just one block out of place.
Even so, we found that dyads reliably improved
across repetitions (b = 3.38, t = 7.90, p < 0.001;
Fig. 2A), the magnitude of which we estimated using a linear mixed-effects model that predicted
accuracy from repetition number and included random intercepts for each dyad.

4.2 Greater communicative efficiency across repetitions

Given that the same towers recurred throughout the interaction, we hypothesized that Architects
would exploit these regularities to provide more concise instructions over time. To test this hypothesis,
we analyzed both changes in the total number of words used and how many messages were sent
within a trial. We estimated changes using linear mixed-effects models containing repetition number
as a predictor, as well as random intercepts and slopes for different dyads and random intercepts
for different tower combinations. Consistent with our hypothesis, we found that Architects sent
messages containing fewer words over time (b = −10.8, t = −10.9, p < 0.001) (Fig. 2B), which
were themselves contained in fewer messages within each trial (b = −0.67, t = −8.01, p < 0.001).

4.3 Changes in words used across repetitions

What explains these changes in communicative efficiency? One possibility is that Architects
increasingly omitted unnecessary words; another is that they changed which words they used.
To distinguish these two possibilities, we compared changes in the frequency of words used in the
first and final repetitions. To ensure that our analyses reflected changes in the referring expression
used to refer to components of each scene (rather than in function words), we recruited two human
annotators who were blind to the source of each utterance to manually extract referring expressions
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from each message. Separately for each dyad1, we compared the word frequency distribution from
the first repetition to those from the final repetition using a permutation-based χ2 test [4], which
revealed a reliable difference between the two distributions (p < 0.001, Bonferroni corrected for
multiple comparisons; Fig. 3B). These results suggest that the increasingly concise instructions at
least partially reflect shifts in which words were used, and not only the omission of unnecessary
words.

4.4 More abstract referring expressions across repetitions
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Figure 3: (A) Words with largest positive and
negative changes in frequency between first and final
repetitions. (B) Change in number of block-level and
tower-level references across repetitions. (C) t-SNE
visualization of similarity between messages from
different dyads in the first and final repetitions.

A natural explanation for the shift in which
words were used is that Architects had
learned to produce referring expressions at
a higher level of abstraction, and in particular
ones that corresponded to entire towers
rather than individual blocks. To evaluate
this possibility, the same human annotators
additionally tagged each referring expression
with the number of references to block-level
and tower-level entities. Unsurprisingly, we
found that the number of references to blocks
was greater overall than to towers (b = −7.41,
t(2344) = −20.98, p < 0.001), given
that there were eight blocks in each scene
and only two towers. More importantly, we
found that this gap shrunk across repetitions
(b = 1.35, t(2344) = 10.49, p < 0.001;
interaction between repetition number and
reference type), reflecting both an increase
in the number of tower-level references
and decrease in the number of block-level
references (Fig. 3B).

4.5 Consistency and variability
in referring expressions across dyads

Given the overall increase in references to
“C” and “L” in the final repetition, which
resemble two of the towers, the results so far
suggest at least some degree of consistency
between dyads with respect to the tower-level
abstractions that emerged. How strong was
this convergence upon a common set of labels
across dyads? To explore this question, we
estimated how dissimilar the language used by different dyads was within each repetition by
computing the Jensen-Shannon divergence (JSD) between the word frequency distributions from each
pair of dyads. We noticed that although many dyads appeared to use similar referring expressions
(Fig.3C), the mean JSD increased between the first and final repetitions (0.080, 95% CI:[0.041, 0.118],
p = 0.004). Taken together, these observations hint that different subsets of our sample discovered
distinct solutions for mapping tokens of natural language to components of each scene — a possibility
which we are exploring in ongoing work.

5 Discussion

In this paper we have shown how human dyads use compositional abstractions, expressed in natural
language, to make collaboration more concise and accurate in a repeated physical assembly task. In
future work, we plan to further analyze the content and structure of these linguistic conventions (e.g.,

1Two dyads whose language was too sparse to be represented in a contingency table were excluded from this
analysis.
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emergence of unique tokens for towers and scenes); analyze the emergence of these tokens in more
complex, compositional scenes; and develop autonomous artificial agents who can emulate human
behavior in the Architect and Builder roles. In the long term, such studies may shed light on how
goal-relevant abstractions emerge from interaction between intelligent, autonomous agents.
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