Communicating semantic part information in drawings
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Figure 1: Objects used in communication game with example drawings below, where stroke color indicates different parts.

Abstract

We effortlessly grasp the correspondence between a drawing
of an object and that physical object in the world, even when
the drawing is far from realistic. How are visual object
concepts organized such that we can both recognize these
abstract correspondences and also flexibly exploit them when
communicating them to others in a drawing? Here we consider
the notion that the compositional nature of object concepts
enables us to readily decompose both objects and drawings of
objects into a common set of semantically meaningful parts.
To investigate this, we collected data on the part information
expressed in drawings by having participants densely annotate
drawings of real-world objects. Our dataset contained both
detailed and sparser drawings produced in different commu-
nicative contexts. We found that: (1) people are consistent
in what they interpret individual strokes to represent; (2)
single strokes tend to correspond to single parts, with strokes
representing the same part often being clustered in time; and
(3) both sparse and detailed drawings of the same object em-
phasize similar part information, although detailed drawings
of different objects are more distinct from one another than
sparse drawings. Taken together, our results support the notion
that people flexibly deploy their abstract understanding of
the compositional part structure of objects to communicate
relevant information about them in context. More broadly,
they highlight the importance of structured knowledge for
understanding how pictorial representations convey meaning.

Keywords: compositionality; objects and categories; percep-
tual organization; sketch understanding; visual communication

Introduction

When we open our eyes, we do not experience a meaningless
array of photons — instead, we parse the world into people,
objects, and their relationships. The ability to represent
semantically meaningful structure in our environment is a
core aspect of human visual perception and cognition (Navon,
1977). As a testament to this ability, we effortlessly grasp
the correspondence between a physical object in the world
and a simple line drawing of it, even though such drawings
lack much of the rich visual information present in real-world
objects, including color and texture. How are visual object
concepts organized such that they can robustly encode such
abstract correspondences? Here we explore the notion that

perceiving these correspondences is supported by our ability
to decompose both objects and drawings into a common set
of semantically meaningful parts (Biederman & Jul [1988)).

Recent advances in computational neuroscience have pro-
vided an unprecedentedly clear view into the algorithms used
by the brain to extract semantic information from raw visual
inputs, including drawings, exemplified by modern deep
learning approaches (Fan, Yamins, & Turk-Browne, 2018;
Yamins et al 2014). Nevertheless, a major gap remains in
adapting such deep learning models to emulate the structure
and flexibility of human semantic knowledge (Lake, Ullman,
Tenenbaum, & Gershmanl, 2017). A promising approach
to closing this gap may be to exploit the parsimony and
interpretability of structured representations that reflect how
visual concepts are organized in the mind (Battaglia et al.,
2018).

However, pursuit of this strategy relies upon a thorough
empirical understanding of this conceptual organization and
how people express this knowledge in natural behavior.
We aim to contribute to this understanding by probing the
expression of visual semantic knowledge in a naturalistic
setting that exposes both its structure and flexibility: visual
communication via drawing. This approach departs from
the conventional strategy for inferring the organization of
visual object concepts, which entails eliciting judgments with
respect to a small number of experimenter-defined dimen-
sions. Instead, drawing tasks permit participants to include
any elements they consider relevant and combine these el-
ements freely, yielding high-dimensional information about
how people organize and deploy visual semantic knowledge
under a naturalistic task objective.

Recent computational work using drawing tasks to probe
visual concepts have focused on either recognition (Eitz,
Hays, & Alexal 2012} |Yu et al., |2017) or generation (Ha &
Eckl 2017; M. L1, Lin, Mech, Yumer, & Ramanan, 2019)
of entire drawings. However, the question of how semantic
information within drawings is organized has not been inves-



tigated as thoroughly (cf. [L. Li, Fu, & Tail 2018}, [Schneider]
[& Tuytelaars, 2016). The goal of this paper is to present
a systematic approach to analyzing the correspondence be-
tween semantic knowledge about the internal part structure of
objects and the procedure by which people robustly convey
this knowledge in their drawings. Specifically, this paper
advances recent work investigating how drawings convey
semantic information in three ways: first, we collect dense
part annotations on freehand drawings of real-world objects,
allowing an explicit focus on compositional part structure,
second, we explore the link between this semantic structure
and the dynamics of drawing production, and third, we
examine differences in how visual semantic knowledge is
expressed between contexts.

Methods

We developed a web-based crowdsourcing tool, built with
jsPsych. s [2015), to collect dense semantic
annotations of the stroke elements in drawings of real-world
objects (Fig. 1).

Communicative drawing dataset

We first obtained 1195 drawings of 32 real-world objects
from a previously collected experimental dataset in which
pairs of participants played a drawing-based reference game
(Fan, Hawkins, Wu, & Goodman, |2019I)E| Object stimuli
were photorealistic 3D renderings belonging to one of four
basic-level categories (i.e., bird, car, chair, dog), each of
which contained eight exemplars. On each trial of the
experiment, participants were presented with a shared con-
text containing four of these objects. One participant (the
sketcher) was privately cued to draw a target object so that
the other participant (the viewer) could pick it out from
the set of distractors. Across trials, the similarity of the
distractors to the target was manipulated, yielding two types
of communicative contexts: close contexts, in which all
four objects belonged to the same basic-level category, and
far contexts, in which objects belonged to different basic-
level categories. This context manipulation led sketchers to
produce relatively simpler drawings containing fewer strokes
and less ink on far trials than on close trials, while still
achieving high recognition accuracy in both contexts.

Prior works analyzing the semantic properties of drawing
data have used a raster image representation (e.g., *.png), an
expedient format for applying modern convolutional neural
network architectures (Fan et al}[2018};[Sangkloy et al., 2016}
2017). However, to investigate how semantic
structure manifests during drawing production, it was critical
to encode each drawing using a vector image format that
preserves the inherently sequential and contour-based nature
of drawing production (e.g., *.svg). Thus, each drawing in
our dataset is represented as a sequence of individual strokes.
A stroke is defined as the mark left by a virtual pen on

L All materials and data are available at https://github.com/
cogtoolslab/semantic_parts.
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Figure 2: Annotation interface. Participants selected sub-stroke
elements (splines) and tagged them with part labels.

a digital drawing canvas between being ‘placed onto’ the
canvas and being ‘lifted up’. We parameterized each stroke
by a sequence of cubic Bzier curves, called splines. This
format provides a compact representation of drawing data,
which also preserves the sequence in which each element was
produced.

Semantic part annotation

We crowdsourced dense semantic annotations for every
spline in every stroke of the drawings from this dataset. We
refer to our annotation data as dense because labels were
provided for splines, which are at a finer level of granularity
than strokes.

Participants 326 participants were recruited via Amazon
Mechanical Turk (AMT) and provided informed consent in
accordance with the Stanford IRB. Participants were given
a base compensation of $0.35, plus $0.002 for every spline
they annotated and $0.02 for every drawing they annotated
completely.

Task procedure Each participant was presented with a
sequence of 10 drawings that were randomly sampled from
the communicative drawing dataset (Fig. [2). Their goal was
to tag each spline with a label corresponding to the part it
represented (e.g., seat, leg, back for a chair). To facilitate
consistent tagging, participants were provided with a menu
of common part labels that were associated with each basic-
level category (Table[T). Participants could also generate their
own part label if they believed none of the common labels
applied. If any spline was too short for annotators to feasibly
annotate it with their mouse cursor, it was concatenated with
its neighboring splines until the resulting spline was long
enough to easily select. To give participants full information
about the original communicative context, we showed the
drawing with the same array of four objects that the original
sketcher had viewed, with the target object highlighted in red.
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Data preprocessing We first standardized all 304 distinct
labels provided by participants, mapping them to a common
set of 24 part labels that applied to all objects in the dataset.
This common set was defined as the superset of all labels that
appeared in the part menu in the annotation task. Although
most labels provided already exactly matched one in the
common set (i.e., 90.1%), participants were permitted to
assign their own custom label, resulting in additional lexical
variation that we collapse over in the current analysis. For
example, some custom labels were either synonymous with
or more specific than one of the common labels (e.g., ‘leg
support’, ‘foot’, or ‘strut’ for ‘leg’). We manually constructed
a part dictionary to map such custom labels to one of the
common ones, ensuring a consistent level of granularity for
all spline labels. We only examined drawings that were
annotated by at least three distinct participants, providing
a consistent way to evaluate annotation consistency across
splines. To reduce bias due to missing data, we also restricted
our analyses to annotation trials in which the drawing was
completely annotated (i.e., all splines were tagged). After
applying all preprocessing, our resulting dataset consisted of
864 drawings that had been completely annotated 3 times.

Results

How well do viewers agree on what strokes mean?

Before proceeding to use these annotations to examine how
semantic information is conveyed during drawing production,
we conducted a basic check of inter-annotator consistency.
Specifically, we examined how often different annotators
agreed on what each spline in a drawing represented. We
found that 95.6% of all splines received the same label
by at least two of the three annotators, and 67.8% of all
splines received the same label by all three annotators. This
shows that the way viewers interpret which part each stroke
represents is systematic, validating our general approach.
Further, it suggests that sketchers may exploit this system-
aticity to produce strokes that they expect viewers to interpret
consistently. In subsequent analyses, we collapsed over inter-
annotator variation: we assigned the modal label to splines to
which at least two annotators had given the same label; for
the remaining 4.4% of splines, we sampled one of the three
labels provided.

How do strokes correspond to parts of objects?

When composing a recognizable drawing of a real-world ob-
ject, how do people decide what information to convey with

category part labels
bird eye, beak, head, body, wing, leg, feet, tail
car bumper, headlight, hood, windshield,
window, body, door, trunk, wheel
chair backrest, armrest, seat, leg
dog eye, mouth, ear, head, neck, body, leg, paw, tail
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Figure 3: (A) Analyzing the correspondence between strokes and
part labels: number of unique part labels assigned to different splines
within the same stroke and number of different strokes used to draw
each part. (B) Distribution over number of part labels within a
stroke. (C) Distribution over number of strokes used to draw a part.

each stroke? A natural possibility is that their actions closely
correspond to the part structure of that object. Concretely,
we hypothesized that most strokes in our dataset would not
cross part boundaries: that all splines within a given stroke
would be assigned the same part label. Conversely, because
depictions of parts can be arbitrarily detailed, and some parts
re-occur throughout an object (e.g., multiple legs on a bird,
chair, or dog), we hypothesized that there would often be
more than one stroke per part (Fig.[3]A).

To evaluate the first hypothesis, we computed the number
of unique part labels across all splines within each stroke.
We found that for 81.6% of the strokes in our dataset there
was only one part label; the remaining 18.4% of strokes
were associated with two or more labels (Fig. BB). In other
words, most strokes represented exactly one part, but in a
minority of cases they spanned multiple parts (e.g., a single
stroke connecting the head and body of a bird, or an armrest
and leg of a chair). We were concerned, however, that
these proportions were inflated by strokes with very few
splinesE| To address this concern, we constructed a null
model controlling for the number of splines. Part labels were
randomly sampled from the full list of parts in the drawing
such that each spline was equally likely to represent any part
regardless of the stroke it belonged to. In simulations from
this null model, only 55% of strokes corresponded to a unique
part while 45% of strokes spanned multiple parts. Thus,
individual strokes in our dataset were much more likely to
correspond to a single part (i.e., not cross part boundaries)

Table 1: Part labels provided to annotators.

2The modal number of splines per stroke (20% of cases) was 1,
but there was a long tail; the mean number was 2.6.



than would be expected under random assignment of part
labels to splines.

To evaluate the second hypothesis, we computed the num-
ber of strokes that were used to represent each part of an
object (Fig.[BIC). We found that 46.1% of parts were depicted
using exactly one stroke, 26.0% using exactly two strokes,
11.3% using exactly three strokes, and 16.6% using four or
more strokes. Thus, nearly half the time, a single action
was sufficient to depict an entire object part. However, the
remaining 53.9% of the time, more than one stroke was
required to depict an entire part, which would be expected for
those parts that consisted of multiple disconnected subparts
within an object (e.g., wheels of a car, paws of a dog).

The findings so far show that the information people con-
vey with each stroke systematically corresponds to the parts
that objects contain. We next sought to understand how these
properties may vary between drawings generated in different
communicative contexts. Indeed, strokes spanning multiple
parts were slightly more common in drawings produced in
far contexts (19.4%, CI: [17.9%, 20.9%]) than close contexts
(17.6%, CI: [16.1%, 18.8%ﬂ p= 0.07), suggesting that
sketchers were somewhat more likely to use a single stroke
to represent multiple contiguous parts in a context where
a sparser drawing would be sufficient. And the proportion
of parts requiring more than one stroke was slightly higher
for close drawings (55.8%, CI: [53.7%, 58.6%]) than far
drawings (52.0%, CI: [49.9%, 54.6%].p = 0.02), suggesting
that sketchers may have included more detail per part in
close drawings to distinguish the target object from similar
distractors.

Do strokes representing the same part tend to be
produced in succession?

In the previous section we discovered that slightly more than
half of the parts in our dataset were depicted using multiple
strokes. This result raised the question: to what extent
are strokes depicting the same part drawn in succession, or
interleaved among strokes depicting other parts?

To investigate this question, we estimated the mean length
of ‘streaks’ containing strokes depicting the same part. First,
we collapsed across the spline annotations examined in the
previous section and represented each stroke by the modal
part label assigned to its splines. We represented each
drawing as the sequence of these part labels, and defined
part streak length to be the number of consecutive strokes
annotated with the same part labeIE] For example, in the
drawing shown in Fig. @A, two ‘leg’ strokes were placed
before moving on to the ‘foot’, giving a streak of length 2.
Finally, we averaged these streak length values over every

395% confidence intervals were estimated via stratified bootstrap
resampling (N=1000 iterations) of drawings within each context
condition.

4We excluded 78 out of the 864 drawings where this measure
was not well-defined, i.e. sketches containing only one stroke or
part label, or containing fewer than two strokes sharing the same
part label.
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Figure 4: (A) Analysis of sequence in which strokes depicting
each part were drawn. (B) Comparison of mean length of streaks
consisting of strokes that depict the same part with null distribution
of permuted stroke sequences.

drawing in the dataset to obtain our statistic.

To evaluate whether the empirical part sequences were
more structured than expected if parts were drawn at random,
we constructed a null model to serve as a baseline. For
this null model, we permuted the part sequence such that
the number of instances of each part was preserved, but the
temporal structure was disrupted (Fig. 4A). We generated a
null distribution of streak lengths for each drawing by re-
peating this permutation procedure 1000 times and measuring
the mean streak length for each permutation. Finally, we
obtained a z-score for each drawing by computing where
the empirical streak length fell in the permuted streak length
distribution. A drawing with a z-score near 0 had a streak
length that was commonly obtained by placing strokes in a
random order, while a drawing with a higher z-score is more
structured than expected under the null.

We found that the empirical streak length was reliably
higher for all objects than that of the permuted sequences
(mean z-score across drawings: 2.07, CI: [1.90, 2.23];
Fig. @B), and higher for the close drawings (mean z-score:
2.58; CI: [2.26, 2.90]) than far drawings (mean z-score: 1.56;
CI: [1.38, 1.74]). The lower streak length for far drawings is
consistent with their lower stroke count overall—when only



one or two strokes are used per part, there is a ceiling on the
mean streak length. However, when sketchers do use multiple
strokes to convey a single part (i.e., because there are multiple
subparts, or to add more detail), they tend to draw these in
succession before moving on to a different part. These results
suggest more broadly that the procedure by which people
convey semantic information in drawings is organized by the
part structure within objects.

How is part information emphasized in different
communicative contexts?

Our findings so far bear on how the way people compose
communicative drawings of objects reflects their semantic
knowledge of the parts those objects are composed of. A key
consequence of such semantically organized part knowledge
is that it naturally supports flexible expression across different
communicative contexts. For example, when communicating
about a chair in a far context containing objects from other
basic-level categories, sketchers may include only the essen-
tial information to indicate the presence of certain parts (e.g.,
armrests) that distinguish it at the category level. On the
other hand, when communicating about that same chair in
a close context containing other, perceptually similar, chairs
sketchers may emphasize aspects of parts that distinguish it
at the object level (e.g., the curvature of the armrests), by
applying more strokes and/or more ink in each stroke.

We hypothesized that sketchers emphasize part informa-
tion to preserve relevant distinctions in context. To explore
this possibility, we asked the following questions: (1) How
similarly is object-specific part information emphasized in
both close and far contexts? (2) How do differences in how
part information is emphasized between contexts affect how
discriminable those drawings are?

To investigate these questions, we represented each draw-
ing by a 48-dimensional part-feature vector that contained
information about: (a) how many strokes and (b) how much
total ink was allocated to each of the 24 unique part labels
in our dataset. Specifically, the first 24 elements of each
part-feature vector contained the number of strokes allocated
to each part, and the remaining 24 contained the total arc
length of all strokes allocated to each part. Because our
primary goal was to understand relative differences in how
much emphasis was placed on each part across drawings in
our dataset, we first z-scored the raw stroke-count and arc-
length measurements within each feature dimension, thereby
mapping all features to the same unit-variance scale. We
then collapsed across drawings within each object-context
combination, yielding 64 average part-feature vectors (i.e., 32
objects x 2 context conditions).

Similar part information emphasized across different
communicative contexts In order to investigate to what ex-
tent similar object-specific part information is emphasized in
different communicative contexts, we computed the matrix of
Pearson correlations between part-feature vectors. Formally,
this entailed computing: R;; = cov(7i7j)/\ /var(7)var(7;), where
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Figure 5: (A) Layout of mean part-feature vectors for each object-
context combination, projected onto top two principal components.
(B) Comparison of feature similarity between close and far drawings
of the same object, relative to close and far drawings of different
objects within a category. (C) Comparison of feature similarity
between far drawings of objects within a category, relative to close
drawings. Error bars reflect 95% Cls.

7; and 7; are the mean part-feature vectors for the ith and jth
object-context combinations, respectively.

While close and far drawings of an object differed in their
overall amount of detail, we hypothesized that they would
still emphasize part information in similar ways. Specifi-
cally, insofar as similar object-specific part information is
emphasized in both close and far drawings of the same object,
we predicted higher correlations between close and far part-
feature vectors for the same object than for close and far
part-feature vectors of different objects. Consistent with this,
we found strong correlations between the feature vectors for
close and far drawings of the same object (r = 0.73, CI: [0.68,
0.77ﬂ), which were significantly stronger than close and far
drawings of different objects (r = 0.64, CI: [0.60, 0.68]; same
objects vs. different objects: p< 0.001). These results show
that close and far drawings of the same object exhibit similar

595% confidence intervals were estimated via stratified bootstrap
resampling (N=10000 iterations) of drawings within each object-
context combination.



patterns of emphasis across different parts, and this similarity
exceeded that expected due to merely being members of the
same basic-level category (Fig.[5B).

Detailed drawings are more distinct from each other than
sparser drawings While the above findings showed that
close and far drawings of the same object exhibit similar
patterns of emphasis on different parts, close drawings con-
tain greater emphasis on these parts overall than far drawings
(i.e., contained more and longer strokes). How were these
additional strokes being spent?

We hypothesized that the additional part information pro-
vided in close drawings was being distributed across parts
in different ways for different objects, thereby making them
more distinguishable from one another in feature space. To
evaluate this possibility, we computed the mean correlation
between the part-feature vectors of close drawings of objects
in a given category and compared this value with the mean
correlation between far drawings of exactly the same objects.
We found that close drawings were less similar to one another
than far drawings were (close similarity: r = 0.65, CI: [0.60,
0.69]; far similarity: r = 0.73, CIL: [0.67, 0.77]; close vs.
far: p = 0.007), suggesting that sketchers discern which parts
are most diagnostic of the target object among highly similar
distractors and emphasize these parts accordingly (Fig. [5[C).
This was particularly apparent when we visualized the spatial
layout of part-feature vectors: whereas far drawings were
clustered closer together and near the origin, close drawings
were spread further apart from other members of the same
category and further from the origin (Fig. [5JA). Observing
these contextual differences is all the more remarkable given
that this feature representation captures only the amount of
emphasis allocated to each part during drawing production,
setting aside their visual properties.

Discussion

In this paper, we explored how the way people compose
communicative drawings of objects reflects their semantic
knowledge about what objects are composed of. To ac-
complish this, we first collected dense semantic annotations
of sub-stroke elements in communicative drawings of real-
world objects that were produced in different contexts. This
allowed us to interrogate the internal semantic structure
within drawings, and relate this structure to the dynamics
of drawing production in a naturalistic visual communication
task. Overall, we found that: (1) people are highly consistent
in how they interpret what individual strokes represent; (2)
single strokes tend to correspond to single parts, with strokes
representing the same part tending to be clustered in time;
and (3) both detailed and sparse drawings of the same object
emphasized similar part information, with detailed drawings
of different objects tending to be more distinct from one
another than simpler ones. Taken together, our results support
the notion that people deploy their abstract understanding of
the compositional part structure of objects in order to select
actions to communicate relevant information about them in

context.

These findings are resonant with classic and recent work
that has argued for the importance of compositionality in hu-
man perception and cognition in general (Biederman, 1987
Battaglia et al.| [2018; |Lake et al., |2017), and for visual
production in particular (Lake, Salakhutdinov, & Tenenbaum,
2015)). However, unlike prior work which focused on the pro-
duction of abstract symbols (Lake et al., [2015), we consider
the challenge of how people transform perceptually grounded
representations of real-world objects into procedures for pro-
ducing figurative drawings that communicate not only what
they see and know about them, but also what is relevant in
context.

Our work is also related to recent progress in the de-
velopment of computational models of drawing production
(Ha & Eck, 2017; M. Li et al.,, 2019). While results
from these efforts have been galvanizing, the development
of principled metrics by which to rigorously evaluate how
well they emulate human drawing behavior has not kept
pace. By interrogating in detail how humans encode semantic
information into their drawings, and flexibly adjust their
production behavior in different contexts, this paper presents
a first step towards such a set of behavioral metrics. Having
such metrics is important because they would enhance our
ability to distinguish between generative models, and thereby
help advance further model development. It would thus be
valuable to apply up our analytical approach to the large
drawing datasets (Eitz et al., 2012} [Sangkloy et al., |2016;
Jongejan, Rowley, Kawashima, Kim, & Fox-Gieg,2017) that
have provided the basis for these modeling approaches.

In ongoing work, we are extending our analysis of how
different part information is expressed in drawings beyond
simple effort cost measures (i.e., number of strokes, amount
of ink) to encompass content and style information (e.g., the
shape of a bird’s wing, caricaturization of a chair’s armrest).
We expect that augmenting current vision models with a
combination of the requisite semantic part knowledge and the
ability to discern perceptual properties of these parts, such
as style, will enable us to build models that parse drawings
in a more human-like way. More broadly, achieving this
synthesis will lead to both more robust artificial intelligence
and a deeper understanding of human cognition and behavior.
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