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Abstract

Understanding what is communicated by data visualizations
is a critical component of scientific literacy in the modern
era. However, it remains unclear why some tasks involving
data visualizations are more difficult than others. Here we
administered a composite test composed of five widely used
tests of data visualization literacy to a large sample of U.S.
adults (N = 503 participants). We found that items in the
composite test spanned the full range of possible difficulty
levels, and that our estimates of item-level difficulty were
highly reliable. However, the type of data visualization
shown and the type of task involved only explained a modest
amount of variation in performance across items, relative to the
reliability of the estimates we obtained. These results highlight
the need for finer-grained ways of characterizing these items
that predict the reliable variation in difficulty measured in this
study, and that generalize to other tests of data visualization
understanding.
Keywords: data visualization literacy; graph comprehension;
statistical literacy; quantitative reasoning; STEM education;
psychometric evaluation

Introduction
Data visualizations are powerful tools invented by humans for
making sense of a complex world. Although they have only
existed for a few centuries, they are practically indispensable
in modern scientific workflows (Munzner, 2014) and are
pervasive in social media and the news (C. Lee et al.,
2021). Data visualizations (or equivalently, graphs, charts, or
plots) enable people to reason about quantitative information
through visual encodings of data (Keim et al., 2008; Munzner,
2014). A single visualization can even serve multiple
purposes. For example, a scatter plot can help with finding
outliers in the data while also assisting in deriving broader
insights about complex trends (Boy et al., 2014; S. Lee et al.,
2016; Börner et al., 2019; Lundgard & Satyanarayan, 2021).

Performing these tasks relies on the coordination of many
cognitive processes, including rapid visual computations
(Cleveland & McGill, 1984; Ciccione et al., 2023; Cui & Liu,
2021), invocation of the appropriate graph schema (Pinker,
2014), mathematical operations (Gillan & Lewis, 1994),
control of finite attentional and working memory resources
(Padilla et al., 2018), and other reasoning processes to derive
general insights informed by prior knowledge (Carpenter &
Shah, 1998; Shah & Freedman, 2011). However, people
do not automatically acquire the ability to reason about
data visualizations; rather, this ability is acquired gradually,
and usually in formal educational contexts (Alper et al.,

2017; Mix & Cheng, 2012; Wainer, 1980). However, the
effectiveness of educational interventions for helping people
develop core data visualization literacy skills remains unclear.

This lack of clarity reflects, in part, the lack of a
coherent suite of reliable and valid tools for measuring
data visualization literacy. Several test-based measures
currently exist, each of which generally consist of a series
of items, with each consisting of a question paired with a
data visualization (Delmas et al., 2005; Galesic & Garcia-
Retamero, 2011; Boy et al., 2014; S. Lee et al., 2016;
Pandey & Ottley, 2023; Ge et al., 2023; Maltese et al.,
2015). However, because they have not been directly
compared, the extent to which they reliably measure the same
underlying construct and whether they imply a consistent
decomposition of data visualization literacy into distinct
components remains unknown (Brockbank et al., 2025;
Börner et al., 2019; Brehmer & Munzner, 2013; Friel et
al., 2001). Some tests contain items meant to measure a
compact hierarchy of abstract abilities — e.g., progressing
from “reading the data” to “reading beyond the data” (Galesic
& Garcia-Retamero, 2011; Wainer, 1980) — while other tests
are designed to assess performance on a broader suite of more
concrete tasks, such as finding extreme values or detecting
correlations (S. Lee et al., 2016; Ge et al., 2023; Pandey
& Ottley, 2023; Boy et al., 2014). Additionally, there are
tests which also focus on measuring the ability to overcome
misleadingly constructed data visualizations, such as ones
using inappropriate axis limits (Ge et al., 2023). Here we
leverage the diversity of the tasks and data visualizations
represented across several existing tests to develop consistent
procedures for measuring and comparing the difficulty of
tasks involving data visualizations.

In this study, we aggregated 230 items from five tests of
data visualization literacy: a 32-item assessment developed
by Wainer (1980), which we refer to as WAN; a 13-item
assessment developed by Galesic & Garcia-Retamero (2011),
which we refer to as GGR; a 72-item assessment developed
by Boy et al. (2014), which we refer to as BRBF; a 53-
item Visualization Literacy Assessment Test (VLAT; S. Lee
et al. (2016)); and a 60-item assessment known as CALVI
(Ge et al., 2023). Together, these assessments represent some
of the most widely used and influential tools for measuring
data visualization literacy in several research communities,
including computer science, education, and psychology.
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Figure 1: We used 230 items from five popular tests of data visualization literacy, which vary in graph type and task type.

Method
Participants
We used Prolific to recruit 503 U.S.-based participants who
spoke English as their primary language and have maintained
an approval rate of at least 95%. We maximized the
number of participants recruited with the resources available,
allowing us to obtain at least 80 responses for each item in
the stimuli set.

All participants were given up to three opportunities
to complete the warmup trials that included items from
the National Assessment of Educational Progress intended
to assess middle-school level quantitative literacy skills.
Participants who did not pass after three attempts on these
tasks did not proceed to the main experiment.

In total, there were 37 participants who failed to complete
the warm up trials and additionally another 40 participants
who quit the study before completing at least 50% of all trials
(23 items). These 77 participants were all omitted from our
analysis, leading to a total of 426 participants being used in
our analysis and a range of 80 to 92 responses per item.

Materials
We aggregated 230 multiple-choice items from five widely
used assessments of data visualization understanding (Figure
1): WAN (Wainer, 1980), GGR (Galesic & Garcia-
Retamero, 2011), BRBF (Boy et al., 2014), VLAT (S. Lee
et al., 2016), CALVI (Ge et al., 2023).

All assessments categorized items using at least two
common features: by task type, which refers to the reasoning
steps a participant performs to answer a question, and by
graph type, which describes how the image encodes data into
visual features.

Since different assessments sometimes use different labels
for similar tasks, we additionally defined a simpler common
set of task types that could apply to all assessments:
value identification, where participants need to retrieve
an individual value appearing in a plot (e.g., finding
the maximum value); arithmetic computation, where
participants are expected to perform arithmetic operations
over multiple values displayed in the plot (e.g., finding
the average of two values); and statistical inference,
where participants are required to estimate latent parameters
based on the values shown (e.g., judge the strength of trends
or presence of clusters).

To explore the potential impact of presenting information
in a data visualization as opposed to a table, we also included
a small number of table-based items that were otherwise
equivalent to the visualization-based ones.

WAN The test by Wainer (1980) was developed to evaluate
children at the third- to fifth-grade level in the United States
and includes 32 items. It uses six questions which are paired
across one table and three images with different graph types:
line chart, bar chart, and radial plot.

GGR The test developed by Galesic & Garcia-Retamero
(2011) is a widely used 13-item assessment comprising of
three bar plots, three line plots, an icon array, and a
pie chart. It was initially designed to explore a compact
hierarchy of abstract abilities, progressing from “reading the
data” to “reading between the data” and finally, “reading
beyond the data.” Originally, nine of the test items required a
numerical response, and four were multiple choice. However,
to maintain consistency with other test items, we mapped
items requiring a numerical response into a multiple-choice
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Figure 2: Our item sampling procedure selected 46 items from the total set of 230 items for each participant (left). Everyone
was presented with multiple-choice items from all six tests, with a 60 second time limit to answer each question (right).

format by selecting the top four most frequent responses
based on a prior study (Verma et al., 2024).

BRBF The test by Boy et al. (2014) measures the influence
of different data and visual properties used across three
different graph types. It originally consisted of 60 bar
charts, 60 scatter plots, 120 line graphs, and 48
tables. All items were initially categorized by six task
types: maximum extrema, minimum extrema, intersection,
variation, average, and comparison. Each combination of task
type and graph type included at least two unique questions,
five images of charts, and one image of a table. We create a
subset of 72 items representing each unique question, task
type, and graph type combination used in the assessment
to reduce the total number of items while maintaining item
diversity across different categories.

VLAT The Visualization Literacy Assessment Test by
S. Lee et al. (2016) is an influential 53-item assessment
containing 12 chart images generated from real-world data
sources with a unique image of a line chart, a bar
chart, a stacked bar chart, a normalized stacked
bar chart, a pie chart, a histogram, a scatter plot, a
bubble chart, an area chart, a stacked area chart, a
choropleth map, and a tree map. To maintain consistency
with other assessments items, we re-classify the bubble
chart to a scatter plot. The test originally grouped
questions into eight task types: retrieving values from a graph,
finding correlations & trends, finding anomalies, finding
extrema, making comparisons between values, characterizing
distributions, determining the range of values in a graph, and
finding clusters of common values.

CALVI The Critical Thinking Assessment for Literacy
in Visualizations by Ge et al. (2023) is a 60-item test
that contains 45 items intended to mislead users with
unconventional graphs and questions, alongside 15 standard
items, following the design guidelines of VLAT. This
includes a subset of graph types: line chart, bar
chart, stacked bar chart, normalized stacked bar
chart, pie chart, scatter plot, area chart, stacked
area chart, and choropleth map; and a subset of original
task types: retrieve value, find trends & correlations, find
extremum, make comparisons, make predictions, aggregate
values.

Procedure
We evaluated all participants on a representative subset of
items across all five tests (Figure 2). Specifically, each
participant completed 46 items (20% of the total stimulus
set) containing items sampled evenly from all five tests,
graph types, and task types. To ensure that all participants
already possessed basic quantitative literacy skills, each
session began with five questions taken from the version of
the National Assessment of Educational Progress (NAEP)
assessment administered to fourth-grade students. Items
from the same assessment were presented within the same
block. Participants were given a maximum of 60 seconds to
answer each question, and provided with immediate feedback
indicating whether each response was correct.

Results
To what degree do items vary in difficulty? To determine
if there was reliable variation in average performance
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Figure 3: Average performance across all items. Items belonging to the same test share the same color. Error bars represent
bootstrapped 95% confidence intervals.

within our selected test items, we assessed the degree to
which the full set of items, pooled across assessments,
spanned a wide range of difficulty levels (Figure 3). Our
results suggest that this suite of assessments cover nearly
the entire range of possible levels of difficulty, ranging
from items that nearly all participants succeeded on (max.
proportion correct: 0.99; 95% CI = [0.96, 1.00]) to
items that nearly all participants responded to incorrectly
(min. proportion correct: 0.012; 95% CI = [0.0, 0.036]).
Moreover, the average gap in performance between items
reliably exceeded the degree of uncertainty in estimates of
performance on individual items (lowest-precision estimate:
0.46; 95% CI = [0.34, 0.57]), indicating that the observed
variation in performance across items is reliable. We also
found that participants performed below chance across 36
items out of the 230 total items (proportion correct furthest
from chance: 0.012; 95% CI = [0.0, 0.036]).

How does performance vary across tests? While some
of these tests were designed to measure data visualization
literacy in the general adult population, others, such as
WAN, aimed to assess data visualization comprehension
skills among elementary-school-aged children, and CALVI
focuses on the skills needed to detect misleading graphs.
However, these tests have never before been directly
compared to each other under consistent testing conditions.

Here we compared differences in performance across all
five tests (Figure 4A) by fitting a logistic mixed-effects
regression model predicting success on each trial, with test as
a fixed-effects predictor and random intercepts for different
items. We found that performance differs significantly
between tests (χ2(4) = 39.764, p < .001), and on average,
the suite of tests together covers a range of difficulties. This
includes WAN, where participants’ performance is closest to
the ceiling (0.78; 95% CI = [0.71, 0.84]), and CALVI (0.41;
95% CI = [0.35, 0.48]), where participants performed closest
to chance (CALVI average chance: 0.28), with other tests
varying between these (GGR: 0.62; 95% CI = [0.48, 0.75];
BRBF: 0.69; 95% CI = [0.63, 0.73]; VLAT: 0.64;
95% CI = [0.58, 0.71]).

Taken together, these results are consistent with the notion

that some of these tests are reliably harder than others,
perhaps because they probe more advanced skills.

How does performance vary across task types? Perhaps
one of the most salient ways different items can differ
is the type of task they require people to perform, with
some tasks being relatively simple (e.g., retrieving a single
value from the visualization) and other tasks requiring
additional computation (e.g., inferring the correlation
between two variables). Here we sought to evaluate
the degree to which there was a reliable difference in
performance across items belonging to the three different
categories of tasks: value identification, arithmetic
computation, statistical inference (Figure 4B). As
before, we fit a logistic mixed-effects regression model
predicting success on each trial from task as a fixed-
effects predictor and random intercepts for different
items. This analysis revealed reliably different levels of
performance across task types (χ2(2) = 13.847, p < .001;
value identification: 0.71; 95% CI = [0.65, 0.77];
statistical inference: 0.60; 95% CI = [0.54, 0.65];
arithmetic computation: 0.51; 95% CI = [0.45, 0.58]).
These findings are compatible with multiple possibilities,
including the notion that some tasks are inherently harder
than others — for instance, that value identification is
easier than arithmetic computation with statistical
inference in between. However, they also remain consistent
with the possibility that these differences are a product of the
way that the specific questions were posed (or the response
options generated) in these tests, such that it is possible,
in principle, for value identification to be arbitrarily
difficult or to design easier arithmetic computation items
that reduce the gaps between them.

How does performance vary across different graph types?
Another prominent feature by which these items differ is
the visual encoding used to present data. For example, a
bar chart maps numerical values to the height of bars,
while a stacked bar chart not only uses bar height to
convey quantitative values, but can additionally convey the



0.0

0.2

0.4

0.6

0.8

1.0

pr
op

or
tio

n 
co

rr
ec

t

va
lu

e
id

en
tif

ic
at

io
n

ar
ith

m
et

ic
co

m
pu

ta
tio

n

st
at

ist
ic

al
in

fe
re

nc
e

task type

do
t p

lo
t

ba
r

10
0%

 s
tk

d 
ba

r

st
kd

 b
arlin
e

sc
at

te
r

ar
ea

st
kd

 a
re

a

hi
st

og
ra

m pi
e

m
ap

ra
di

al

graph type

tr
ee

m
ap

A Btest

W
AN G
G

R

BR
BF

VL
AT

CA
LV

I

C

single
item

Figure 4: Performance across different tests (A), task types (B), and graph types (C), measured by the mean proportion of
correct responses. Opaque dots indicate the mean proportion of correct responses for individual items. Error bars represent
bootstrapped 95% confidence intervals.

distribution of values of a categorical variable. As such,
it might be the case that some types of visualizations are
simply more complex than others, and thus more difficult to
comprehend. Here, we evaluate the degree to which there was
a reliable difference in performance across the 13 different
types of data visualizations (Figure 4C). As in the last section,
we fit a logistic mixed-effects regression model predicting
success on each trial from graph type, with random intercepts
for different items, excluding those with tables.

We found that items using different graph types reliably
differed in performance (χ2(12) = 29.106, p = .004),
with the most difficult being stacked bar charts (0.40;
95% CI = [0.28, 0.51]) and the easiest being histograms
(0.83; 95% CI = [0.79, 0.91]). However, some graph types,
like tree maps, only appeared only in a single test, so
performance on them is difficult to interpret, as it may rely
on the difficulty of the test it came from rather than the type
of graph. These findings provide some support for the notion
that some types of graphs are inherently easier to interpret
than others, though further work that uses more controlled
manipulations of graph type (avoiding confounds with test)
would provide a stronger test of this possibility.

How well do all of these features explain variation in
performance? So far we have found that all three features
explain some amount of variation in item-level difficulty. To
what degree do they account for unique or shared variance?
To answer that question, we examined to what degree every
combination of these features further improved fit to our
performance data. We fit every combination of these three
features as fixed effects to different mixed-effects logistic
regression models to participant errors (7 total; Figure 5).
We additionally fit a model that includes an interaction term
between test and task type, reflecting the possibility that
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the difficulty of an arithmetic computation item might
depend on which test it was sourced from. Since not all
graph types were paired with all three task types, we omitted
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the interaction between graph type and task type. Variation
across items was modeled as a random effect.

We found that while the model with only task type as a
fixed effect predicted the least amount of variance in the data
(marginal R2: 0.03; 95% CI = [0.01, 0.06]), model fit was
improved significantly with the addition of test as a fixed
effect (χ2(4) = 29.233, p < .001), and moderately with graph
type as a fixed effect (χ2(12) = 27.387, p = .006).

We found that including all three factors provided the
best fit (marginal R2: 0.13; 95% CI = [0.09, 0.19]), with
a reliable interaction between test and task (marginal R2:
0.16; 95% CI = [0.14, 0.23]). Nevertheless, we found that
all models still fell short of the noise ceiling (split-half R2:
0.91; 95% CI = [0.89, 0.93]), a measure of reliability in
our item-level estimates of performance. The relative size
of this gap between even the best performing three-factor
model and the noise ceiling suggests that the majority of the
variance to be explained requires a model that can capture
more subtle characteristics of each item that cause some to be
more challenging than others.

How does performance vary between different data
presentation formats? One potential barrier to answering
certain questions about data visualizations might be the level
of precision provided by these displays by comparison with
other formats for displaying quantitative information, such
as tables. For example, a value identification question
might even be easier to answer precisely with a table than
with a scatter plot. To explore potential differences
in difficulty attributable to data presentation format, we
included several pairs of items from two of the tests (Wainer,
1980; Boy et al., 2014) that were otherwise identical, except
that one of them included a table and the other a data

visualization.
We did not find evidence for an overall difference in

performance on items with tables and those with data
visualizations (t(59) = -1.42, p = .160), neither in BRBF
(∆table − data visualization: 0.01; 95% CI = [ -0.10, 0.10])
nor in WAN (∆ table − data visualization: 0.09; 95% CI = [-
0.04, 0.22]; Figure 6). These null results are compatible
with several possibilities, including that data presentation
formats do not strongly impact performance and the suite
of items included in this evaluation were insufficient to
resolve a global difference between formats. Given the
substantial variability we observed across pairs of items,
however, it seems more plausible that the degree to which
data presentation format impacts performance depends more
strongly on other factors (e.g., the question being asked, other
characteristics of the data).

Discussion
Here we administered five assessments of data visualization
literacy to a large sample of U.S. adults to obtain precise
estimates of the difficulty of these items under consistent
test conditions. We found that various features of these
items (i.e., graph type, task type) could explain some item-
level variation in performance, but there was substantial and
reliable variation left unexplained. Thus, other features, or
additional features, are needed in order to predict why some
of them are more difficult than others.

In recent years, there has been broadening agreement on a
general conceptual framework for data visualization literacy
(Börner et al., 2019; Hedayati et al., 2024). However, there
is not yet a consensus on a concrete set of instruments
for measuring these literacy skills in a comprehensive
manner, organized around components that are predictive
of detailed patterns of performance. Our findings suggest
major opportunities to develop unified measures of data
visualization literacy which reliably evaluate the same skill
set across individuals.

Having more unified measures is especially valuable for
contributing to development and evaluation of computational
models that can make explicit predictions on an item-
by-item basis, as well as be used to test more specific
hypotheses concerning the underlying mechanisms that
support the understanding of complex visual inputs. In
the future, such models might have the potential to explain
in mechanistic terms why some operations with visual
displays are more difficult for people than others (Nobre
et al., 2024), and what strategies might be useful for
overcoming those barriers. In addition, improved measures
and models might help to account for reliable variation
in data visualization literacy across individuals, who might
have varying amounts of prior experience with mathematics,
statistics, and other data-intensive subjects. In the long
run, improved understanding of the mechanisms that support
data visualization understanding might be leveraged to
develop improved ways of helping more people acquire core
quantitative literacy skills.
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