Theory Acquisition as Constraint-Based Program Synthesis

Haoliang Wang
Dept. of Psychology
UC San Diego
haw027@ucsd.edu

Nadia Polikarpova
Dept. of Computer Science & Engineering
UC San Diego
nadia.polikarpova@ucsd.edu

Abstract

What computations enable humans to leap from mere obser-
vations to rich explanatory theories? Prior work has focused
on stochastic algorithms that rely on random, local perturba-
tions to model the search for satisfactory theories. Here we
introduce a new approach inspired by the practice of ‘debug-
ging’ from computer programming, whereby learners use past
experience to constrain future proposals, and are thus able to
consider large leaps in their current theory to fix specific de-
ficiencies. We apply our ‘debugging’ algorithm to the mag-
netism domain introduced by (Ullman, Goodman, & Tenen-
baum) 2010) and compare its efficiency and accuracy to their
stochastic-search algorithm. We find that our algorithm not
only requires fewer iterations to find a solution, but that the
solutions it finds more reliably recover the correct latent theo-
ries, and are more robust to sparse data. Our findings suggest
the promise of such constraint-based approaches to emulate
the way humans efficiently navigate large, discrete hypothesis
spaces.

Keywords: debugging; program synthesis; theory learning

Introduction

A fundamental aspect of human reasoning is the drive to go
beyond individual observations toward more general expla-
nations (Lombrozo, [2006). This drive to explain more of
the world we see in terms of more unified theories is per-
haps most obviously manifest in the process of scientific dis-
covery. For example, at the turn of the 20th century many
physicists were convinced that they were on the cusp of con-
firming the existence of the luminiferous aether, an invisi-
ble medium permeating all of space that supposedly carried
light waves. The decisive blow to the aether came as a result
of the Michelson-Morley experiment, which found no evi-
dence for such a medium, and its failure eventually led to the
formulation of special relativity, a more successful unifying
physical theory (Staley}, 2009). The importance of using such
evidence to strongly constrain the development of scientific
theories has long been of a subject of discussion in philoso-
phy of science (Kuhnl 1962} Platt, [1964)). The key component
of such a theory-development process is that the addition of
some constraining evidence may require large, discontinuous
jumps in the space of all possible theories. How might simi-
lar principles be applied to explain the theories that ordinary
people derive to explain their everyday observations (Gopnik:
& Meltzoft, 1998 [Schulz, [2012; (Careyl, [1985)?

A large body of work in cognitive science investigating the
principles governing which theories people acquire across a

Edward Vul
Dept. of Psychology
UC San Diego
evul@ucsd.edu

Judith E. Fan
Dept. of Psychology
UC San Diego
jefan@ucsd.edu

variety of different domains has argued that it conforms to
the predictions of Bayesian inference, whereby learners re-
liably select hypotheses according to their posterior proba-
bility (Tenenbaum), [1999; [Ullman et al.l [2010; [Ullman &
Tenenbaum, 2020). However, efficiently navigating the pos-
terior probability landscapes poses severe algorithmic chal-
lenges, especially for hypotheses defined over large combi-
natoric spaces of discrete alternatives. In such domains it is
computationally intractable to evaluate every hypothesis, and
conventional search or sampling strategies are often stymied
by their non-differentiable, disjointed character. A promi-
nent proposal for how humans might nevertheless navigate
such hypothesis spaces, known as stochastic search, employs
Markov Chain Monte Carlo (MCMC) to explore the space of
possible theories, which operates by randomly sampling local
changes to the currently held theory (Ullman et al., 2010).

Although this algorithm achieved some success, it is not
clear whether it can serve as a reasonable process model of
how humans update their theories. In particular, such stochas-
tic sampling approaches cannot propose directed modifica-
tions to the current theory that make effective use of pre-
viously encountered constraints, and the proposed modifi-
cations are usually local. Here we present a computational
model that updates its currently held theory by asking where
and why its current proposal went wrong, and accumulates
these constraints to guide its future proposals. We call our al-
gorithm the “debugging” algorithm, reflecting the similarity
between the way it operates and the way that computer pro-
grammers diagnose and repair specific deficiencies in soft-
ware (Shapirol, [1982; [Zeller, 1999} Rulel [2020). Our experi-
ments show that our algorithm is not only substantially more
efficient than stochastic search, but that it also achieves higher
accuracy in recovering the latent theories, even under sparse
data.

Theories as Logic Programs

What is a theory? Consider the example domain of mag-
netism introduced in (Ullman et al.,[2010): the learner is con-
fronted with a collection of objects a, b, ..., j, and gets to ob-
serve that some pairs of these objects interact, and other pairs
do not (see “data”). The learner must come up with an
explanation for these patterns of interactions. It might postu-
late that there are three types of objects: plastic, magnets, and
metals. Further, it might specify laws that allow it to deduce

constraint-based theory acquisition

D=DtuUD"
2%
e 0e® _
PY 5;.} a® N theory [’
N Vg rule set theory model M Interact(X, Y) <- P(X)“P(Y)
D D Interact(X, ¥) <- P(X)"Q(Y)
Interact(f,i) | Interact(a,g) - - = -2 propose / _ / / evaluate P > O? Interact(X, Y) <- Interact(Y, X)
Interact(j,c) | ... / constr@t R C 'R subjectto @(R) P(R|'D) =
I — minimize length(R) satisfiable
4 / model
rule spaceR -~ o = True \ a1 e D i - L
o= € . 1/ ‘, // \\
= ap/\ﬁ\w N R derives I _’/ ~\.‘)
strengthen Why' « /,-,_\ i
constraint N 3I € DT \'/ Y
2 o= \P/\L R cannot derive \! _-_,’/
whynot? <—

r : Interact(X, Y) <- P(X)"P(Y)
r : Interact(X, Y) <- P(X)"Q(Y)

r,: Interact(X, Y) <- Interact(Y, X)"Q(X)

Figure 1: The “debug” algorithm applied to the domain of magnetism. The data D includes all pairs which we know to either
interact, or not. To explain these data, we postulate a logical program (R) comprised of a theory (domain laws) and a model
(mapping predicates of the theory onto objects). The algorithm finds a suitable program by repeatedly proposing candidates,
evaluating where they deviated from the data, and growing constraints to avoid similar errors in the future (see text).

whether a given pair of objects interacts based on their types
(e.g. magnets interact with magnets). Such laws capture the
abstract, reusable knowledge, and hence may be considered
the “theory”. Finally, to connect the theory with the obser-
vations, the learner must also classify the objects a,b, ...,
into the three types; this concrete, non-reusable knowledge is
referred to as the “model”.

Following (Ullman et al., 2010), we formalize knowledge
as logic programs (Cropper & Dumancic, 2020; Evans &
Grefenstette, 2018). A logic program is a set of rules. For
example, we can represent the theory of magnetism using the
following three rules:

Rule 1: Interact(X,Y) <+ P(X)AP(Y)
Rule 2: Interact(X,Y) <« PX)AQ(Y) (1)
Rule 3: Interact(X,Y) < Interact(¥,X)

The meaning of a rule is that its left-hand side is true if its
right-hand side is true. Hence, this theory states that objects
of class P can interact with each other and with objects of
class Q, and that interactions are symmetric. Here P, Q, and
Interact are predicates, which represent set and relations over
objects; X and Y are variables that can be substituted with
atoms, i.e. concrete objects. A rule with an empty right-hand
side is called a fact; for example P(f) is a fact that simply
states that atom f belongs to type P. Thus, using a combi-
nation of general rules and facts, we can represent both the
theory and the model in a unified format as a logic program.

A logic program can derive new facts: for example, given
P(f) and P(j) and the rules in we can derive the
fact Interact(j, f) using the rules 1 and 3. Under the logic-
program formulation, if a particular interaction cannot be de-
rived from known rules, then it is assumed to be false.

Theory acquisition as Bayesian Program Induction

A learner is confronted with an unlabeled collection of ob-
jects, and notes that some pairs of objects interact (D), while
other pairs fail to interact (D™); see “data”. Given the
the observed data D = {D", D™}, the learner must find a set
of rules R (i.e. alogic program) that derives the facts in D"
and cannot derive the facts in D™. The rule set R=TUM
contains both theory rules 7 and model rules M. We assume
that the space of all possible rules & _is given, so R C .

Candidate programs can be evaluated in a Bayesian frame-
work: by using the posterior probability of the rules given the
observed data D:

P(R|D) o< P(D|R)P(R) 2)

where P(D|R) represents the likelihood of the data given the
rule set. Here we adopt a simple error likelihood, wherein
observed data have a probability of € of deviating from the
predictions of the program R. P(R) represents the prior prob-
ability of the rule set that discourages large rule sets and com-
plex rules.

While we can define the goal of the learner in these simple
terms, the actual challenge lies in finding suitable programs
under this posterior. The set of candidate programs is a huge
discrete space: even with only 55 possible rules—the size
of R used in our experiments—the size of the search space
is on the order of 10'®. What kind of algorithm might sup-
port search in such a seemingly intractable space? Prior work
on theory acquisition (Ullman et al., 2010) used stochastic
search to explore this space, which we argue is inefficient; in-
stead we propose a new approach based on constraint-based
program synthesis. Next we give an overview of the prior
approach, and then present our approach.

Stochastic Search

Ullman et al.| (2010) suggest that the intractable search pro-
gram inherent in theory acquisition may be characterized as
stochastic search via Markov Chain Monte Carlo (MCMC).
MCMC maintains the current hypothesis R, and in each
search iteration is proposes a new hypothesis R’ from a dis-
tribution based on R. When learning logic programs, the pro-
posal distribution Q(R'|R) is obtained by syntactically local
changes to the current program, such as randomly adding,
deleting, or substituting a predicate or a rule. The pro-
posed theories are then scored according to the posterior, and
accepted in accordance with the Metropolis-Hastings rule.
Ullman et al.|(2010) specifies a particular nested search pro-
cess, wherein an outer MCMC loop samples theory rules, and
then an inner loop attempts to find the best model predicate
assignments for that theory using Gibbs sampling (Geman &
Gemanl, [1984).

The key feature of such MCMC-based stochastic search is
that proposal distributions are, by definition, Markovian: they
only depend on the current theory, regardless of which theo-
ries had been previously considered. This means that new
theories are proposed with no regard for how successful pre-
vious hypotheses were or where they went wrong. Conse-
quently, the search process has no memory, and does not itself
learn during search.

Constraint-Based Synthesis

To make the search more efficient, we need to equip it with a
memory, so the algorithm can keep track of its past mistakes
and learn from them. To this end we take inspiration from
an area of computer science called program synthesis; in par-
ticular, we build upon an existing synthesizer for logic pro-
grams called PROSYNTH (Raghothaman, Mendelson, Zhao,
Naik, & Scholz, 2019). illustrates our full algorithm.
In what follows, we first summarize the core PROSYNTH al-
gorithm and then highlight the changes we made to adapt it
to the theory acquisition domain.

Like stochastic search, PROSYNTH has a proposal stage
and an evaluation stage, but, critically, it maintains a con-
straint to accumulate knowledge about where prior hypothe-
ses went wrong. The constraint @ is a logical formula that
describes the set of acceptable logic programs. For example,
the constraint @ = (rp\VV r2) A—(ro Arp) means that a candidate
program must include one of the rules ry or r, and exclude
one of the rules rg or r;. At the proposal stage, PROSYNTH
proposes a new theory subject to the current constraint @; it
uses a constraint solver to do so efficiently.

At the start of the search, @ starts out empty (7rue), but
throughout the course of the algorithm it accumulates knowl-
edge from failures of previously entertained theories. At the
evaluation stage, PROSYNTH considers counter-examples—
predictions that do not match the data—and grows the con-
straints to avoid the causes of errors in the future. There are
two kinds of counter-examples. When the current program
derives a fact I € D™ known to be false, PROSYNTH asks why

A B
0.045
l l 0.040
0035
P(b) 9(a) 2 .
50,030 elbow point
©
(J]
r21 5 0025
>
l l 90.020
(]
Interact(b, a) Q(a) %0.0]5
\ 29 / 0.010
l 0.005

0.0004™50 700 150 200 250 300 350 400

rule index

Interact(a, b)

Figure 2: (A) Derivation tree for Interact(a, b) in our running
example. Model rules colored in orange, theory rules in blue.
(B) There are 376 unique rules found during the 500 runs of
MCMC. We take the rules to the left of the elbow point to be
our initial candidate rule set.

that erroneous derivation was made (which rules were used to
derive I), and modifies the constraint to exclude this combi-
nation of rules from all future programs. Likewise, when the
current theory fails to derive a fact I € D' known to be true,
PROSYNTH asks why-not? (which rule omissions are pre-
venting / from being derived) and modifies the constraints to
require that one of these rules be included.

Why? Suppose our current proposed theory is T =
{r20,721, 122} and our current model is M = {rg,r,r10}; these
rules are shown in “rule space”. [Fig. 2JA shows how
this rule set can derive the fact Interact(a,b) € D™ that is
known to be false. Since this derivation is using the rules
{r1,r10,121,r22}, PROSYNTH updates the current constraint
@ to @ A—(r1 Arip Arai Arpa) to require that one of the rules
from the problematic combination be excluded.

Why not? Suppose in the next iteration the constraint
solver proposes the same model but removes rp; from the the-
ory in order to satisfy the new constraint. However, the new
program fails to derive Interact(f,i) € D*: the constraint
solver has clearly excluded too many rules. At this point
PROSYNTH attempts to find a small set of excluded rules
that are absolutely necessary to derive Interact(f,7). To this
end, it uses a technique called delta debugging (Zeller,|1999),
which systematically explores smaller and smaller subsets of
the excluded rules and asks “what if I included all rules ex-
cept this small subset”? In this sense, delta debugging can
be thought of as counterfactual reasoning. In our example,
PROSYNTH finds that a program with all rules except {rs,
rig} (i.e. P(f) and Q(f)) still fails to derive Interact(f,i): in
other words, even with the most permissive theory, f cannot
interact unless it is either a magnet or a metal. Hence one

of these two rules must be included in all future programs; it
updates the current constraint ¢ accordingly to @ A (rs V ryg).

Jointly learning theory and model

The typical problem formulation in logic program synthesis
is: given the input facts (the model) and the output facts (the
observations), find the rules that can derive the observations
from the model. The theory acquisition domain differs from
this typical formulation in that the model is not given, but
needs to be learned. Stochastic search (Ullman et al.l 2010)
uses a separate Gibbs sampling loop to learn the best model
for the current theory. However, this approach is fundamen-
tally inconsistent with learning from failures, since it is im-
possible to impose a constraint on a theory irrespective of the
model. Instead, unlike stochastic search and traditional pro-
gram synthesis, our algorithm learns the model and theory
jointly by postulating a place-holder truth predicate that al-
lows PROSYNTH to treat the model rules as part of the pro-
gram rather than the input to the program.

Bayesian Constraint-Based Synthesis

Core PROSYNTH is not suited for Bayesian program induc-
tion. The reason is that its proposal stage does not perform
optimization, and instead simply queries a SAT (i.e. Boolean
satisfiability) solver for any program that satisfies the con-
straint @. As a result, although PROSYNTH is able to find a
program that perfectly fits the data, it does not guarantee that
this program is parsimonious according to the prior P(R).

To overcome this issue, we made an important modifica-
tion to the PROSYNTH’s proposal stage. Instead of using a
SAT solver, we use a MaxSAT (i.e. maximal satisfiability)
solver (Bjorner, Phan, & Fleckenstein, [2015)), to find propos-
als that not only satisfy the constraints, but also maximize the
prior.

P(R) o< exp (—length(R)) 3)

For our algorithm we use € = 0 in the definition of the like-
lihood, which means that any program that makes mispredic-
tions has a likelihood (and posterior) of zero, and all programs
that make no errors have a likelihood of 1.

P(D|R) = 1[match(prediction,D)] 4)

Consequently, a program that maximizes the prior and has a
non-zero likelihood also maximizes the posterior. As a result,
the first program we evaluate that has makes no prediction
errors is guaranteed to maximize the posterior (Eq. 2).

Stochastic Rule-Space Prioritization

The final modification we made to the core PROSYNTH algo-
rithm has to do with the rule space ®. As explained above,
PROSYNTH takes as input a finite space of rules, from which
the constraint solver picks the current proposal. In the domain
of theory acquisition, however, the space of all possible rules
is unbounded: one can always create longer and longer rules
by adding more predicates to the right-hand side. To over-
come this discrepancy, we can stratify the infinite space of

rules into finite layers R = {RU Ry U...}. With this strat-
ification in place, we can first invoke PROSYNTH with the
space Rp; if there is no solution in this space (i.e. the con-
straint @ becomes unsatisfiable), we can invoke PROSYNTH
again with Ky U %, and so on. The challenge is to split the
rules into layers in such a way that rules that are more likely
a priori to be a part of the optimal program appear in earlier
strata.

A naive way to split the rules is by their length, however
not all rules of the same length are equally useful in the-
ories. [Ullman et al.| (2010) used this observation to speed
up stochastic search by equipping the MCMC algorithm with
templates, or canonical forms of rules that capture structure
likely to be used. These templates were encouraged to be
used during sampling an initial theory and proposing a new
theory. To provide PROSYNTH with the same beneficial bias,
we randomly sampled 500 times from their given templates
as seeds and ran MCMC chain from each seed for 1600 iter-
ations, always accepting the proposed change. We collected
every rule in every theory explored during these runs and cal-
culated the frequency of each rule (see [Fig. 2B); these fre-
quencies essentially provide an estimate of the true prior used
by the stochastic search in (Ullman et al., 2010). We then
stratify the rules based on fixed cut-offs on their frequency,
setting the initial layer Ky to include all the rules left of the el-
bow point as an approximation of how templates were used in
MCMC. This stratification yields 35 theory rules in Ky (cap-
turing 99.87% of the theory rules sampled by MCMC).

Results

In the preceding section, we introduced our algorithm for
theory acquisition. Here, we compare our algorithm with
MCMC introduced in (Ullman et al.,|2010) and test the claim
that our algorithm improves upon its stochastic search coun-
terpart.

Learning more efficiently and accurately

Following |Ullman et al.| we consider a concrete system with
3 magnets, 5 magnetic objects and 2 non-magnetic objects.
The learner was given full observations (i.e. interactions be-
tween every pair of objects) and none of the laws or core pred-
icate structure to begin with. We run both models 10 times.
For MCMC, each run comprises 1600 iterations of the outer
Metropolis-Hastings loop sampling over candidate theories
and each outer iteration sprouts an inner loop that learns the
correct model assignment. For the “debugging” algorithm,
each outer iteration corresponds to one call to the SAT solver,
and each inner iteration corresponds to one hypothetical the-
ory and model proposed in the why-not step. For fair compar-
ison, we unroll both outer and inner loops in both algorithms
and record every iteration at the finest grain, this amounts to
considering one iteration to be an evaluation of a single can-
didate ruleset. The results are shown in Figure 3]

We first measure the posterior probability of the theories
learned by both algorithms, which is the standard established

r— — — — 1 2
AO — B C1-0‘—debug
—— stochastic
0
501 0.81
+ 2 =
.g -100 8 061
3 £S
2 4 5
8 .| RE)
o5 150 © 041
S . . S
learning suboptimal % a
2001 and larger theories Yy
g U _I_I
-250 - debug 00
—— stochastic
: . : 10 . . .
100 1000 10000 2000 10000 100 1000 10000

simulation iterations

simulation iterations

Figure 3: (A) Log posterior for both algorithms across all runs. (B) Zooming into the dashed box in (A), when both algorithms’
log posterior score went flat. (C) Fj score for theories learned by both algorithms. Note that all x axes are in logarithmic scale.

by [Ullman et al.| (2010). To favor MCMC, we use the pos-
terior that it uses to search (rather than the all-or-nothing
posterior implicit in the debugging algorithm). Although for
MCMC the posterior rises quickly, as the algorithm aims to
fit the data, the MCMC algorithm usually gets stuck in lo-
cal optima and ends up learning sub-optimal, larger theo-
ries. In contrast, the “debugging” algorithm always learns the
globally optimal theory, yielding an eventual posterior 14.88
(€*7%) times higher than the answer found by MCMC (see
Figure[3A).

We further evaluate both algorithms on another two met-
rics:

(a) Accuracy — we used the Fj score as our measure of
theory-learning accuracy, which reflects the degree to which
the theory learned by the algorithm coincided with the ground
truth theory. Fj lies in the range [0,1] with higher scores in-
dicating greater accuracy. It is computed by taking the har-
monic mean of the precision (i.e., the proportion of learned
theory rules that coincided with the ground truth theory) and
recall (i.e., the proportion of the ground truth theory that co-
incided with the learned theory):

2
F = 5
'™ (precision + recall1))

(b) Efficiency -— how quickly the algorithm converges
on a satisfactory solution.

Figure [BIC shows the theory F; score for both algorithms
as a function of iteration, revealing three effects. First, the
MCMC algorithm exhibits greater variance because the pro-
posed new theories are random, unguided, perturbations of
the current theory, whereas the “debugging” algorithm pro-
duces a relatively more consistent result. Second, the “de-
bugging” algorithm performs better in terms of asymptotic Fj
score: of all 10 runs, the “debugging” algorithm always con-
verges to the groundtruth theory, whereas for MCMC, only
2 out of 10 learned the exact correct theory. In addition,

the number of iterations the “debugging” algorithm requires
to converge is one order of magnitude smaller than that of
MCMC.

More robust learning under sparse data

To test the robustness of learning when only partial evidence
is observable, we evaluated the algorithms on random subsets
of the data. We considered subsets ranging from 5% to 100%
(in 5% increments) of the full set of observations. For each
subset fraction, we sampled 10 times and run both algorithms
on each sample. Both algorithms can learn programs from
subsets of data that not only capture the observed data, but
also correctly generalize to new data (Figure fJA). However,
the “debugging” algorithm exhibits much better accuracy for
theories at nearly all subsampling ratios (see Figure @B).

Furthermore, even at a low percentage of sampled data
(e.g. 20%), the “debugging” algorithm can still learn a rea-
sonable theory (F; = 0.89), even though at that subsampling
ratio it cannot accurately generalize to unobserved data (F] =
0.64). This result is consistent with the “Blessing of Abstrac-
tion” (Goodman, Ullman, & Tenenbaum, [2011)): abstract the-
ory knowledge is acquired relatively easily, even when con-
crete details of the model (such as which objects get which
predicates) are still ambiguous.

How does ‘“debugging” learn?

We claimed that MCMC can only propose local changes to
its current theory while the “debugging” algorithm can make
large, non-local changes, leading to better performance. To
verify this, for both algorithms, we measured the similarity
between the proposed theory and current theory, defined as
2X /N, where X represents the number of matched laws be-
tween the current theory and the proposed theory, and N rep-
resents the total number of laws in both theories.

The “debugging” algorithms shows a lower similarity
score, suggesting that it’s able to make larger, more variable

=z
o
o
o

o
O
o
O

o
=)
yo
=)

s g

507 Loy

S pe

= o

S06 o

§ A §0.6

o 2
0.5 L5

o
=N

o

=N

— debug — debug
03 — stochastic 03 — stochastic
20 40 60 80 100 20 40 60 80 100

proportion of full data

Figure 4: The F; score for data and theory as a function of
proportion of randomly sampled data from the full observa-
tion. MCMC learns suboptimal and larger theories.

jumps as needed in syntactic space. The lower mean similar-
ity coincides with greater variance, indicating that the mean is
lower due to its willingness to undertake the occasional large
jumps (see Figure[5A).

We next test the claim that accumulating evidence from
prior iterations of the search process helps the “debugging”
algorithm find answers efficiently. We calculated the number
of theories that satisfy all constraints after each call to the
SAT solver. As shown in Figure 5B, the space of possible
theories shrinks by a factor of 4 per outer loop iteration as the
constraints builds up, indicating that accumulating constraints
are critical to the efficiency of our search algorithm.

Discussion

In this paper, we presented a computational model that can
learn from its past failures when searching for a theory to
explain its observations. We demonstrated that our algo-
rithm acquires theories more efficiently and accurately than
its stochastic counterparts, and exhibits more robust learn-
ing under sparse data. Our “debugging” algorithm relies on
the accumulation of errors to make its search more efficient.
Such efficient use of errors is reminiscent of the way that
backpropagation is used to guide learning of weight param-
eters in artificial neural networks. However, despite the ef-
ficiency of such learning algorithms in continuous parameter
spaces, they fundamentally rely on calculating gradients, and
thus are not well suited to discrete, combinatoric hypothesis
spaces. By contrast, the “debugging” algorithm employs an
error-driven learning strategy that can efficiently search over
disjointed, non-differentiable domains, including the space of
all programs.

Capturing graded patterns in human theory acquisition will

Telé

14

similarity
o o o o = —
[N ~ o oo o [

number of constraint-satisfying rules oo

o
o

0 0 20 30
iterations

debug stochastic

Figure 5: (A) The similarity between the proposed and cur-
rent theory. Score is averaged across 10 runs. (B) The size of
hypothesis space where the “debugging” algorithm can pro-
pose new theories from as a function of iterations. Score is
averaged across 10 runs.

require several refinements to our algorithm. First, the “de-
bugging” algorithm currently assumes that observations have
no noise, and thus is designed to accumulate constraints to fit
all observations. Human learners, by contrast, cannot avoid
such noise, so in future work we aim to alter the way our
“debugging” algorithm handles constraints in order to accom-
modate noisy observations. A second concern about the real-
world plausibility of the “debugging” algorithm is that it re-
lies on a state-of-the-art SAT solver to find a set of rules to
satisfy the set of constraints learned incrementally during the
search process. Nonetheless, the SAT solver exhibits some
key features of human reasoning that are conspicuously ab-
sent from stochastic search. Specifically, it learns during
search by accumulating errors and thus becomes markedly
more efficient after the first few iterations. Overall, we be-
lieve that further development of such constraint-based algo-
rithms that incorporate error-driven learning may lead to bet-
ter algorithmic theories of how humans efficiently navigate
large, discrete hypothesis spaces.

Acknowledgments

We thank Tomer Ullman for providing the code for the
stochastic search model. We also appreciate Yuyao Wang, Ji-
aying Xu and members of the Cognitive Tools Lab at UC San
Diego for very helpful discussion. This work was supported
by NSF CAREER Award #2047191 to J.E.F.

References

Bjorner, N., Phan, A.-D., & Fleckenstein, L. (2015). vZ -
An Optimizing SMT Solver. In Proceedings of the 21st
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, Vol. 9035 (pp. 194—

199). Berlin, Heidelberg: Springer-Verlag. Retrieved from
do1:10.1007/978-3-662-46681-0_14

Carey, S. (1985). Conceptual change in childhood. MIT
press.

Cropper, A., & Dumanci¢, S. (2020). Inductive logic
programming at 30: a new introduction. arXiv preprint
arXiv:2008.07912.

Evans, R., & Grefenstette, E. (2018). Learning explanatory
rules from noisy data. Journal of Artificial Intelligence Re-
search, 61, 1-64.

Geman, S., & Geman, D. (1984). Stochastic relaxation,
gibbs distributions, and the bayesian restoration of images.
IEEE Transactions on pattern analysis and machine intel-
ligence(6), 721-741.

Goodman, N. D., Ullman, T. D., & Tenenbaum, J. B. (2011).
Learning a theory of causality. Psychological review,
118(1), 110.

Gopnik, A., & Meltzoff, A. N. (1998). Words, thoughts, and
theories. Mit Press.

Kuhn, T. S. (1962). The structure of scientific revolutions.

Lombrozo, T. (2006). The structure and function of explana-
tions. Trends in cognitive sciences, 10(10), 464—470.

Platt, J. R. (1964). Strong inference. SCIENCE, 146(3642).

Raghothaman, M., Mendelson, J., Zhao, D., Naik, M., &
Scholz, B. (2019). Provenance-guided synthesis of dat-
alog programs. Proceedings of the ACM on Programming
Languages, 4(POPL), 1-27.

Rule, J. S. (2020). The child as hacker: building more human-
like models of learning. Unpublished doctoral dissertation,
Massachusetts Institute of Technology.

Schulz, L. (2012). The origins of inquiry: Inductive inference
and exploration in early childhood. Trends in cognitive sci-
ences, 16(7), 382-389.

Shapiro, E. Y. (1982). Algorithmic program debugging. Ph.
D. Thesis.

Staley, R. (2009). Albert michelson, the velocity of light,
and the ether drift. Einstein’s generation. The origins of
the relativity revolution.

Tenenbaum, J. B. (1999). A bayesian framework for concept
learning. Unpublished doctoral dissertation, Massachusetts
Institute of Technology.

Ullman, T. D., Goodman, N. D., & Tenenbaum, J. B. (2010).
Theory acquisition as stochastic search.

Ullman, T. D., & Tenenbaum, J. B. (2020). Bayesian models
of conceptual development: Learning as building models of
the world. Annual Review of Developmental Psychology, 2,
533-558.

Zeller, A. (1999). Yesterday, my program worked. today,
it does not. why? ACM SIGSOFT Software engineering
notes, 24(6), 253-267.

doi:10.1007/978-3-662-46681-0_14

	Introduction
	Theories as Logic Programs
	Theory acquisition as Bayesian Program Induction

	Stochastic Search
	Constraint-Based Synthesis
	Jointly learning theory and model
	Bayesian Constraint-Based Synthesis
	Stochastic Rule-Space Prioritization

	Results
	Learning more efficiently and accurately
	More robust learning under sparse data
	How does ``debugging" learn?

	Discussion
	Acknowledgments
	References

