Generalizing physical prediction by composing forces and objects
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Abstract

Our ability to make reliable physical predictions even in novel
settings is a hallmark of human intelligence. Here we inves-
tigate how people infer multiple physical variables simultane-
ously and compose them to generalize to a novel scenario. Par-
ticipants (N=203) observed a series of balls launched at dif-
ferent angles in a 2D virtual environment and generated pre-
dictions about their trajectories. We found that people could
infer the masses of different balls based on these observations,
as well as the existence of a latent "wind” force, and com-
pose knowledge of these two variables to generalize to novel
situations in a subsequent test phase. We modeled this gen-
eralization as the consequence of being able to simulate tra-
jectories by independently combining force and mass informa-
tion in accordance with Newtonian mechanics. To validate this
approach, we also tested several alternative models and com-
pared their generalization behavior to one another and to that
of people. Together, our study points to the value of using gen-
eralization to probe the underlying representations supporting
physical prediction.

Keywords: intuitive physics; world model; compositional
generalization; computational models

Introduction

People readily make physical predictions about how objects
will behave even in novel situations. For example, golfers can
use their prior knowledge about golf balls and wind forces
to play on a windy day; gamers playing Super Mario Bros.
quickly learn how different characters react differently to the
unnatural gravity in the game, and later readily control these
avatars to accomplish tasks in underwater scenarios by fac-
toring in water resistance. Indeed, living in an uncertain and
open-ended physical world, a fundamental goal of our cog-
nition is to generalize from limited experience so as to be-
have appropriately in unpredictable future tasks and situa-
tions. How do people learn to “carve physics at its joints”
— that is, to uncover hidden variables and rules that can be
flexibly used to generalize to new scenarios?

One possibility is that people are not just learning to
map input sensory information to output predictions, but are
rather inferring the latent properties in a structured genera-
tive world model — an internal model encoding the physi-
cal dynamics of how the world works (Battaglia, Hamrick,
& Tenenbaum, 2013). Prior work in intuitive physics has
established that people can infer latent physical parameters
like mass (Sanborn, Mansinghka, & Griffiths, 2013; Ham-
rick, Battaglia, Griffiths, & Tenenbaum, 2016) and friction
(Ullman, Stuhlmiiller, Goodman, & Tenenbaum, 2018) by
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observing object’s motion. In particular, it has been argued
that people’s inference and judgements about physical prop-
erties can be explained by having a noisy Newtonian inter-
nal physics model (Ullman, Spelke, Battaglia, & Tenenbaum,
2017). Going beyond just inferring a single parameter in the
physics model, it has also been found that people are able
to simultaneously induce the conceptualization of objects as
well as the causal relationships between them by watching
objects interact with each other in the domain of magnetism
(Bonawitz, Ullman, Gopnik, & Tenenbaum, 2012). Together,
these findings suggest that people can learn an internal world
model that encodes the underlying dynamics of the physical
world at multiple levels: from underlying causal structure to
specific parameters.

However, if world models could not extend to novel objects
and situations, they would be of limited use to us. Therefore,
a crucial aspect of learning a structured world model is that
people should be able to flexibly compose the variables in
the model to make reliable physical predictions when faced
with novel scenarios that are related but nonidentical to past
experiences. To date, however, few studies have investigated
how or whether people are able to accomplish this.

In this paper, we sought to explore how people learn physi-
cal world models such that they can compositionally general-
ize to novel scenarios and make reliable predictions. We fo-
cus on a specific kind of physical world model, namely mod-
els that encode the latent forces and masses of objects in an
environment. This kind of world model, although simple, can
have a wide range of variations (e.g. types of forces, different
mass values) and is a prerequisite for learning more complex
world models. To this end, we developed a novel paradigm
where participants must infer multiple latent variables of the
physical dynamics during training and compose them to gen-
eralize in the test phase. Specifically, we ask participants to
play a physics-based video game. In this game, participants
use a paddle to catch three balls of different masses in two en-
vironments where different latent forces (downward gravity
and a wind force blowing to the right) are at play. People were
trained on 5 out of these 6 ball-environment combinations and
then asked to generalize to the held-out combination. In or-
der to succeed at this task, participants must infer the latent
structure (e.g. the existence of different latent forces in differ-
ent environments) as well as physical parameters (e.g. mass
of different balls) of the underlying dynamics and compose
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Figure 1: (A) The 2 x 3 design matrix of our experiment, where participants were trained on 5 out of these 6 cells, and asked to
generalize to the held-out cell. The choice of held-out cell was counterbalanced across participants. (B) Different trajectories

of a ball when its mass and the environment varies.

these to generalize in the novel ball-environment combina-
tion. We find that people can learn both latent variables, and
critically compose this knowledge to generalize to the novel
combinations in the test phase. Our modeling results sug-
gest that people achieve such generalization, in part, by con-
structing composable internal models of the physical scene
and performing model-based compositional generalization.

Experiment
Participants

203 participants (100 female; mean age = 25.9 years) re-
cruited from Prolific completed the experiment. Data from
all participants were included as all met our preregistered in-
clusion criteria. Participants provided informed consent in ac-
cordance with the UC San Diego IRB. The experiment lasted
approximately 35 minutes and participants were paid $14/hr
based on this expected completion time.

Task environment & procedure

To probe physical prediction, in this experiment, we ask par-
ticipants to play a virtual game of catch. A ball is launched
from a point on a large circle, and the participants’ task is to
move a rectangular paddle along the outside of the circle to
catch the ball (Figure 1B). Each trial began with the paddle
placed at 3 o’clock, participants then adjusted the paddle’s
location with the arrow keys. When participants were satis-
fied with the paddle’s location, they launched the ball using
the spacebar (as soon as the ball was launched, they could no
longer adjust the paddle location). The ball’s launch trajec-
tory was animated. If the ball made contact with any part of
the paddle, this was considered a success. Participants then
pressed the spacebar to proceed to the next trial. We manip-
ulate the following variables in each trial: the environment
where the participants perform this task, the mass of the ball,
the location where the ball was launched, and the force with
which the ball was launched.

In order to introduce different latent forces that require dif-
ferent predictions to maintain high accuracy, we use two en-

vironments cued by different background images. In one en-
vironment, there is only gravity (F) pulling downward; and
in the other environment, there is both a downward grav-
ity force and a rightward wind force (F,,). As these forces
are evocative of indoor/outdoor environments, we use the in-
door/outdoor nomenclature for simplicity throughout the pa-
per. To elicit participants’ inferences about physical param-
eters, we use three types of balls: light, medium and heavy.
All balls are the same size, but have different colors and tex-
tures, allowing participants to learn a color/texture — mass
mapping throughout the experiment. The correspondence be-
tween the color/texture of the ball and its mass is shuffled
across participants. As a way of measuring how well people
could make predictions under different physical conditions,
the ball appears at a location sampled from each of the 12
hours on a clock face, and is launched towards the center of
the big circle with an initial force whose direction and mag-
nitude were indicated by an arrow, either strong (red) or soft
(orange). We manipulate mass (light, medium, heavy) and
environment (indoor, outdoor) using a “2 x 3 factorial de-
sign” such that succeeding on any given trial required com-
bining these two latent variables (see Figure 1A). Each ball-
environment combination consists of 24 trials (12 launching
locations x 2 launching forces).

The game consists of a training phase and test phase. In the
training phase, participants are exposed to five of the six ball-
environment combinations. The subsequent test phase only
includes trials with the remaining ball-environment combina-
tion. To generalize to the test phase, the participants need to
successfully infer the underlying structure (the existence of
gravity/wind) as well as the specific parameters (how strong
the gravity/wind is, and how heavy the balls are) of the phys-
ical environment. We randomly assign participants to each
of six groups defined by which ball-environment combina-
tion was used at test. To give participants an opportunity to
observe how each ball behaved under different launch condi-
tions (launching location, launching forces) in the same en-
vironment, we divided the 120 (24 x 5) training trials into
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Figure 2: (A) RMSE for all 6 conditions, black thick line shows the mean and standard deviation. Dashed red line represents
expected performance under random guessing (Rinaman et al., 1996). (B) Three trials with the same launching condition were
selected from the three timepoints. Black-dotted trajectory demonstrates the movement of the ball in each trial. When first
playing the game, participants displayed high bias and variance placing the paddle (left most trial), resulting in high RMSE; in
the test phase, both bias and variance have shrinked dramatically (right most trial).

4 blocks by environment (e.g. indoor first, then two out-
door blocks, then indoor). Transitions between blocks were
not marked, and the order in which participants encountered
the indoor/outdoor environments was counterbalanced across
participants. Within each block, we randomized the sequence
of launching location, launching force and ball mass.

Results
People can learn the dynamics over time

Given that participants had no prior exposure to this task en-
vironment, we first sought to evaluate how accurate partici-
pants’ predictions were in absolute terms. On each trial, we
measured the participants’ paddle location, the ball’s ground
truth landing location when it crossed the large circle, and
the angular difference between them. To quantify accuracy
of participants’ behavior, the root average squared devia-
tion from the ground truth landing location in degrees was
analyzed (root mean squared error, RMSE). We calculated
RMSE for the first and second half of training, and test phase,
collapsing over the feature dimensions that varied (launching
force, launching location, ball mass, environment) because
the design was carefully counterbalanced such that each fea-
ture was equally likely to be practiced. Figure 2A shows
RMSE for all 6 conditions. Participants’ performance was
significantly above chance at every point during this exper-
iment (f = —75.16, p < 0.001). Initially, RMSE was high
(mean=55.01°), presumably reflecting the fact that partici-
pants were uncertain about the physical dynamics when they
were first introduced to this task context; participants would
have faced high error when their estimates of either the struc-
ture (e.g. the existence of wind in the outdoor environment)
or the parameter (e.g. the mass of the balls, the magnitude
of the wind, etc.) was wrong. Figure 1B shows an example
of how different estimates lead to very different predictions
of the ball’s landing location. By the end of the experiment,
however, participants significantly improved (mean=38.05°;
b= —11.12,t = —4.76, p < 0.001). Different conditions
showed similarly low error rates, with the exception of the

lightest ball in the outdoor environment, reflecting the fact
that the lightest ball’s behavior is relatively hard to predict
when wind is at play because the amount it accelerates due
to the wind is relatively high compared to the heavier balls.
Qualitatively, 2B shows the distribution of participant paddle
placements in the first half of training trials (early), second
half (late) and test condition (test) as a histogram. Broadly,
this suggests that while people may have struggled to learn
the mechanics of the task at the beginning, they rapidly im-
proved over time.

Model-based generalization can account for test
phase behavior

In the last section, we observed that test phase performance
was as good or better than in the training phase, despite
test phase trials consisting of novel combinations of in-
door/outdoor context and ball mass. What might account
for such behavior? One possibility is that from the obser-
vations in the training phase, participants successfully learn a
world model encoding the latent forces of the different envi-
ronments and masses of the balls, enabling them to compose
the two pieces of information during the test phase to predict
the ball’s trajectory and place their paddle accordingly.

If this is the case, that is, if the participants’ behavior is
in accordance with their world model’s prediction, then from
their paddle placement, we should be able to work backwards
and infer the world model they have in their mind. To test this
hypothesis, we adopted Bayesian inference to search for the
best explaining world model given the participants’ paddle
placement:

_ _ P(DIM)P(M)
X, PODIM)P(M)

P(M|D) (1)
where D stands for participants’ data (paddle placements),
M for participants’ mental world model, P(D|M) for the like-
lihood of the participants’ paddle placements given a hypoth-
esized world model, and P(M) for the prior on models.



As mentioned before, participants need to infer the exis-
tence of latent forces (F, and F,) and estimate the mass of
different balls (m, m, and m3) to succeed in this task. Since
the gravitational force is constant in all contexts throughout
the task, we only infer mass parameters and F,,. It is worth
noting that although minimal, this hypothesis space encom-
passes a large variety of world models that participants may
have. For example, if the wind magnitude were O in a partici-
pant’s world model, they would think there is only downward
gravity and wind does not exist, which is the correct model for
the indoor environment. By varying the ball mass parameter
in a participant’s world model, they would have very different
predictions as to where a given ball would land in the same
environment (see Figure 1B for the trajectories and landing
locations of the same ball under different world models).

Given an initial launching force and launching location
on the circle, the participants’ world model M can simulate
the trajectory of the ball, and estimate the balls’ subsequent
landing location when it crosses the large circle. To capture
participants’ motor noise when placing the paddle, we use
a wrapped normal distribution (defined over angles around a
circle) for the likelihood term P(D|M): P(D|M) = N (u,0),
where the mean y is the estimated landing location using
model M, and ¢ indicates how noisy the participants are when
sampling a paddle placement given the estimated landing lo-
cation. A uniform prior P(M) was used for wind () (in
ranges [—50,100]), mass (m) (in ranges [0.5,5]), and G (in
ranges [0.05,7/2)).

We use participants’ paddle placement during the test
phase as D to measure their estimation of variables in a novel
scenario. We perform a grid search to obtain the posterior dis-
tribution and use the posterior mean as an estimate for each
participant’s (F,,,m, ). Figure 3 shows the estimated F,, and
m for each participant for all six conditions. The posterior
means and standard deviations for each variable are shown as
the colored crosses. The true underlying model parameters
of the three masses (m1, m2 and m3) and wind force (F,,) are
shown as red crosses. On the whole, human estimates appear
to track ground truth parameters quite well, although there
is some evidence of shrinkage, or regularization: the lightest
object mass is overestimated by about 10%, and the heaviest
object’s mass is underestimated by about 10%. This pattern
is consistent with shrinkage due to hierarchical inference in
the face of uncertainty (Gelman & Hill, 2006).

People are consistent on compositional
generalization, regardless of their performance

Our model-based analysis revealed substantial variation be-
tween individuals (Figure 3), with some participants closer to
ground truth during generalization and others farther away.
For these people who are farther away from ground truth dur-
ing generalization, is it because they have learned the right
world model but failed to appropriately combine the informa-
tion, or is it because they are slightly off when inferring the
latent physical properties during training but are still able to
combine these properties when generalizing (even if they are
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Figure 3: Fitted parameters for each individual for all con-
ditions, wind (F,,) on the y axis and mass (m) on the x axis.
Error bars represent standard deviation on each dimension.
Red crosses indicates the ground truth wind and mass values
for the 6 conditions.

not veridical)?

One way to tease apart these hypotheses is to see whether
the estimated wind and mass values are consistent across the
training and test phase. To this end, for each condition, we
compare the estimated wind and mass values for both the
training and test phase. For example, if a participant was
asked to generalize to the medium ball in the outdoor environ-
ment, we analyzed all the trials containing either the medium
ball, or in the outdoor environment (see Figure 1, these trials
correspond to the cells in the same row or column as the test
phase cell in the design matrix). Adopting the same Bayesian
method described in the previous section, we then estimate
the wind magnitude and ball mass using the paddle place-
ments in these trials as data D. We compute the correlation
between these estimated values and those estimated using the
test phase. Though the estimated F,, and m in the training
phase are noisier because they include trials spanning the en-
tire training phase (people’s world model are noisy and un-
certain at the beginning and gradually improve, see Figure
2), we still see reliable correlations between the values es-
timated during training and generalization (wind: r = 0.65,
p < 0.001; mass: r =0.67, p < 0.001). These results suggest
that people are internally consistent between the training and
test phases, even when their estimate of either a ball’s mass
or the wind was not veridical.

Comparing different computational models to
human behavior

Our results so far suggest that participants are able to learn a
mental world model from experience and compose their un-
derstanding such that they can generalize to unseen scenarios.
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Figure 4: (A) RMSE of average response for models and hu-

man. (B) Correlation between different model and human’s
signed errors.

In this section, we explore several alternative computational
models that make different assumptions about the underlying
representation used to drive decisions, and compare their pre-
dictions to human behavior.

To this end, we designed and implemented several classes
of computational models as possible alternative accounts for
how participants might perform this task. We use the same
input for every model: on every trial, launching force, ball
color and environment are encoded as categorical variables
(one-hot); with launching location as a numeric value.

* Straight line heuristic: One possible account is that peo-
ple are using a simple heuristic that assumes there is no
force at play and objects always travel in straight lines. If
this were true, since balls are always launched towards the
center of the large circle, participants would always place
the paddle across the circle. This heuristic is accurate when
the ball is launched from 12 o’clock in the indoor environ-
ment where there is only gravity.

* Linear regression: This models assumes that its input
and the ball’s landing location follow a linear relationship
location =Y ; w; X var; + b;. The free parameters are its co-
efficients w; and bias b; for each input variable var;, which
are fitted using least squares.

e Memory retrieval: When asked to predict on a new trial,
this model searches through the trials it has already played
before to find the K most similar trials in terms of input,
and then averages the landing locations on these trials to
make a prediction. We implemented a K-Nearest Neighbor
(KNN) model for this, and used Manhattan distance for the
categorical variables in the input, and angular distance (L2)
for launching location. The free parameters are K and the
relative weighting of the angular distance compared to the
Manhattan distance for the similarity calculation.

* MLP: We implemented a 4-layer (200 and 100 units for the
two hidden layers respectively) fully connected neural net-
work, using ReLU as its activation function and stochastic
gradient descent (SGD) optimizer with a learning rate of
0.2. The free parameters are the weights and biases of the
connections.

We take the “best performing variant” of each class by
optimizing their free parameters (except for the straight line
model which has no free parameters) using the ball’s ground
truth landing locations in the training trials, and ask them to
predict on the generalization trials.

To systematically compare the pattern of errors made by
the models and humans, we run each model multiple times
to get a distribution of predictions for each trial. The straight
line heuristic model and the linear regression model are deter-
ministic, thus for each trial we only have one prediction from
each of these two models. The variation in the MLP model
comes from running with different seeds; for the memory re-
trieval model, if two neighbors have identical distances but
different predicted landing locations, the result will depend
on the ordering of the training data, resulting in a distribution
of paddle placements.

For each model, we calculate RMSE using the averaged
predictions on each trial. Figure 4A shows RMSE of the
models compared to humans. The straight line heuristic per-
forms worst at capturing human behavioral patterns, provid-
ing strong evidence against the possibility that participants
simply placed their paddle across the circle. The linear re-
gression model and KNN performed about as well as one
other, but reliably worse than humans. Consistent with our
hypothesis above, this indicates that when performing the
task, participants were not retrieving and averaging exemplars
from memory nor fitting a straight line mapping the input to
output. Of the four models, the MLP performs the best in
terms of RMSE. We further calculated the correlations be-
tween each model and human’s signed errors, as shown in
Figure 4B, defined as the signed angular deviation between
human/model’s prediction and the ground truth landing loca-
tion. Positive errors mean that human/model’s prediction is
more “counterclockwise” than the ground truth and negative
for clockwise.

Quantitatively, the MLP outperforms the other alternative
models in capturing human behavior. However, we also dis-
covered systematic deviations between how the MLP and
people behaved on test trials. In Figure 5, we show the same
ball launched from four different locations that spanned the
circle (2 o’clock, 10 o’clock, 6 o’clock and 12 o’clock) in
the indoor environment. Notice that participants’ responses
(shown in blue) are almost always centered at the ground truth
landing location, whereas different models have different pat-
terns of biases. Perhaps most interestingly, when the ball was
launched from 6 o’clock, it went straight up but fell back be-
fore reaching the top of the circle. Participants who correctly
inferred the ball’s mass would place their paddle at the bot-
tom, but for those who inferred a lighter mass, they would
place the paddle atop. This is indeed what happened (see
the two modes of participants’ response when the ball was
launched from 6 o’clock in Figure 5). This, again, indicates
that some participants are slightly off when inferring the pa-
rameters, but at the same time provides strong evidence that
participants do have a mental model of the world which en-
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Figure 5: Four trials selected from the test phase. In these trials, the ball was launched from 6 o’clock, 12 o’clock, 2 o’clock
and 10 o’clock in the indoor environment respectively. MLP, KNN and human predictions are shown in distribution. Straight
line model and linear regression model’s predictions are shown by the x marker because they are deterministic (see text). We
also show the ground truth trajectory and landing location of the ball in each plot.

codes the notion of “mass”, as opposed to using some heuris-
tics to predict where the ball would land. The MLP in this
case, however, predicts that the ball would swerve to the right.
One possible explanation would be that it does not infer an ex-
plicit notion of mass but is rather “averaging” responses in the
training data to generalize to this new ball and environment.
When the ball was launched from 12 o’clock, it went straight
down due to gravity. This is probably the easiest trial of all
144 trials, which is also verified by participants’ concentrated
predictions at 6 o’clock shown in the figure, indicating that
they have inferred the correct latent force model for the in-
door environment during the training trials and successfully
applied that to this novel ball-environment combination dur-
ing generalization. For this very simple trial however, the
MLP systematically deviates from the ground truth and hu-
man predictions, suggesting that it has not learned a compos-
able world model to generalize. Broadly, this suggests that
none of these alternative models provides a satisfying account
of how humans were able to perform this task.

Discussion

How are people able to learn the underlying dynamics of the
physical world and compositionally generalize? We devel-
oped a novel paradigm where participants must infer multiple
latent variables of the physical dynamics and compose them
to generalize in a novel scenario. We found that people can
learn these variables simultaneously over training, but also
compose novel combinations of ball masses and wind condi-
tions at test. A variety of alternative models fail to capture the
same pattern of results seen in people, suggesting that people
are using compositional model-based generalization to solve
the task.

A key question raised by this paper concerns the repre-
sentation and learning mechanism that underlie such flexible
generalization. It is possible that structured representation
may play a crucial role, and understanding how humans ac-
quire such rich world models may be critical for developing
Al agents that learn and generalize as flexibly as humans do.

In future work, we plan to investigate how structured compu-
tational models can account for human behavior. One possi-
ble direction is using probabilistic programs as the represen-
tation of world models (Lake, Salakhutdinov, & Tenenbaum,
2015). The compositional nature of programs naturally lends
itself to modeling how people compose knowledge of differ-
ent variables in the physical world. Acquiring world models
thus becomes program synthesis (Gulwani, Polozov, Singh,
et al., 2017). Human error patterns might be reproduced by
imposing uncertainty on the wind and mass variables in such
programs. Future work should also further develop more
substantial tests of generalization and continual learning in
physics that can be used to more strongly distinguish between
different models. Evaluations in these benchmarks will be
critical to expose the extent to which current state-of-the-art
algorithms for physical reasoning emulate human behavior in
this domain, as well as potential gaps for future algorithms to
fill (Bear et al., 2021).

In this paper, we found that participants could successfully
compose their knowledge about mass and latent forces to gen-
eralize to a novel scenario, it is less clear, however, whether
they were able to distinguish the functional form of these
two forces: gravity (F, = mg) is mass dependent, but wind
(Fy, = Fp) is not. In future work, we plan to manipulate the
functional forms of latent forces and evaluate participants’
generalization behavior by probing physical predictions. Fur-
thermore, people’s world models are likely to encode more
information than just object masses and latent forces (Ullman
& Tenenbaum, 2020), an important direction for future work
is to investigate how people are able to acquire more complex
physical world models and the role they play in generaliza-
tion.

In sum, our paper reveals novel insights about how people
learn about the underlying dynamics of the physical environ-
ment as well as how their world models might be structured.
In the long term, such studies may shed light on the induc-
tive biases as well as learning mechanisms that enable rapid
learning and flexible generalization seen in humans.
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