
Library learning for structured object concepts

Haoliang Wang 1 Judith Fan 1

Abstract

The ability to represent semantic structure in the
environment — objects, parts, and relations — is
a core aspect of human visual perception and cog-
nition. As a testament to this ability, humans are
capable of expressing rich conceptual knowledge
in simple iconic images. Here we leverage re-
cent advances in program synthesis to develop a
self-supervised and data-efficient algorithm for
learning the the part-based structure of objects, as
represented by graphics programs. Our algorithm
iteratively learns higher-order subroutines that can
be used to more compactly represent these ob-
jects, exploiting commonalities between learned
subroutines to infer a part-based grammar. Our
experiments explore how the resulting library of
learned subroutines is jointly determined by the
data distribution and the cost of learning addi-
tional subroutines.

1. Introduction
The ability to represent semantic structure in the environ-
ment — objects, parts, and relations — is a core aspect of
human visual perception and cognition. As a testament to
this ability, humans effortlessly grasp the correspondence be-
tween a real human face and a line drawing of a face, even
without auxiliary cues such as color and texture (Fig. 1).
How are visual concepts organized such that they robustly
encode such abstract correspondences? Here we explore
the notion that this robustness reflects the inherently genera-
tive and compositional organization of human conceptual
knowledge (Palmer, 1977; Tenenbaum et al., 2011). This
paper presents: (1) a proof-of-concept method for learning
higher-order structural units within objects, represented as
subroutines in a graphics library; and (2) experiments ex-
ploring how the resulting library of learned subroutines is
influenced by the data distribution and the cost of learning.

1Department of Psychology, University of California San Diego.
Correspondence to: Haoliang Wang <haw027@ucsd.edu>, Judith
Fan <jefan@ucsd.edu>.

Workshop on Object-Oriented Learning at ICML 2020. Copyright
2020 by the author(s).

Figure 1. Human faces are configured in consistent ways across
varying degrees of visual abstraction (McCloud, 1994).

2. Related Work
2.1. Perceptual Organization

There is a long tradition within cognitive science of seek-
ing to characterize the perceptual units by which humans
parse the visual world (Palmer, 1977; Goldstone, 2003).
Proposed solutions have ranged between manually specified
volumetric primitives (Biederman & Ju, 1988) and features
discovered via dimensionality reduction techniques (Lee &
Seung, 1999), learned by neural networks (Yamins et al.,
2014), or recovered by probabilistic inference (Austerweil
& Griffiths, 2013). While many approaches have tended to
focus on learning image-like internal representations, here
we aim to learn a procedural representation that inherently
captures the compositionality of visual concepts (Lake et al.,
2017), inspired by “vision-as-inverse-graphics” (Kulkarni
et al., 2015).

2.2. Program Synthesis

Specifically, we use techniques from program synthesis to
develop a self-supervised and data-efficient algorithm that
learns the part-based structure of objects, represented by
graphics programs. Prior work using program synthesis to
model graphical data has typically used a fixed Domain-
Specific Language (DSL) to fit target objects, defined by a
set of carefully designed functional primitives (Lake et al.,
2015; Ellis et al., 2018b). Here we leverage a recently
developed program learning method (Ellis et al., 2018a) to
iteratively augment the DSL with higher-order subroutines
that exploit statistical regularities within objects, as well as
commonalities between these learned subroutines to infer a
part-based grammar for objects.

Library learning for structured object concepts

3. Algorithm
Our algorithm proceeds through three main stages: program
synthesis, subroutine learning, and grammar induction. In
the first stage, our algorithm first searches for compact pro-
grams that hit the target specification guided by the base
DSL (Table 1), similar to (Ellis et al., 2018b). In each iter-
ation of the second stage, our algorithm proceeds through
three steps: (1) proposing “fragments” from the induced
program that may be good candidate subroutines to learn;
(2) scoring these fragments according to how well they com-
press the input programs and their size; and (3) re-writing
all programs using the highest scoring fragment (i.e., sub-
routine) and adding it to the library. In the third stage, the
algorithm compresses this augmented DSL into a more com-
pact part-based grammar (Figure 2).

DSL programs propose

score

 add & rewrite

subroutine learning

grammarDSL
augmentedbase

program synthesis grammar induction

Figure 2. Schematic overview of algorithm.

3.1. Graphics Program Synthesis

As a proof-of-concept, we apply our algorithm to sketches
of “smiley faces.” Each smiley face is represented by a spec-
ification composed from a small set of graphical symbols,
such that every stroke is depicted using either a circle or
a line. Each smiley face consists of 9 possible features
: head (circle), two types of mouth (circle or line),
two types of left eye (circle or line), two types of right
eye (circle or line), left glasses lens (circle) and right
glasses lens (circle).

Given that each graphical element can be represented by a
circle or line, we are able to begin with a very simple
base DSL (Table 1). We use the Sketch program synthesizer
(Solar Lezama, 2008) — no pun intended — to synthesize
compact graphics programs that hit each input specification
(Table 2). Given the base DSL and a specification S, we use

Table 1. Base Domain-Specific Language (DSL).

circle Unit circle at (0,0) with radius 1
line Unit line from (0,−0.5) to (0,0.5)
move(x,y) move to (x,y)
scale(r) scale the size by ratio r
rotate(a) rotate clockwise by angle a
for(i,body) repeat body for i times

Table 2. Example smiley face (left), specification (middle), and
program synthesized from that specification (right).

Drawing Specification Induced Program

Circle(4,3,9)
Line(3,2, 3,3)
Line(5,2, 5,3)
Line(3,4, 5,4)

((move 4 3 (scale 9
(rotate 0 circle)))

(move 4 4 (scale 2
(rotate 2 line)))

(move 3 2 (scale 1
(rotate 0 (for 2
line))))

Bayesian inference to obtain the most likely program p that
generated each specification S, given a DSL of primitives
D . Our algorithm recovers p maximizing:

P(p|S,D) ∝ P(S|p)P(p|D)

where P(S|p) represents the likelihood of a specification
given a program: here we adopt the all-or-nothing like-
lihood 1[p consistent w/ S]. P(p|D) represents the prior
probability of the program: here we penalize long programs
and set the prior of p ∝ exp(−length(p)).

3.2. Library Learning

The programs induced above consist of sequences of draw-
ing commands. However, because the order in which draw-
ings commands are executed is unimportant for learning the
part-based structure of smiley faces, we instead represent
the programs as a set of λ -calculus expressions, where vari-
ables are prefixed with $, and we adopt De Bruijn indices to
model bound variables. For example, this is the λ -calculus
expression for the face in Table 2:

set((λ(move 4 3 (scale 9 (rotate 0 circle)) $0)),

(λ(move 4 4 (scale 2 (rotate 2 line)) $0)),

(λ(move 3 2 (scale 1 (rotate 0 (for 2 line))) $0)))

We propose fragments from the set of λ -calculus expres-
sions to model the reuse of structure. We enumerate subsets
of the set to get all possible combinations of features, yield-
ing a very large number of fragment candidates.

To determine which ones to add to our base DSL, and the
order in which they should be added, we developed a scor-
ing function to rank these fragment candidates. This scoring
function takes two pieces of information into account: mini-
mum description length (MDL) and the size of the DSL (L).
The MDL term reflects the minimum number of lines of
code we need to use to represent the original input programs
using the candidate fragment and subroutines in the current
DSL, which naturally favors learning large fragments. The
DSL size term reflects the total number of lines of code
that would be added to the base DSL, and its contribution is

Library learning for structured object concepts

co
st

 o
f a

ug
m

en
ti

ng
 D

SL 1

0

2

3

4

5

90

50
70

2 3 4 5 6 7 8 9 10 11 12 13 14 151 16 2 3 4 5 6 7 8 9 10 11 12 13 14 151 16 2 3 4 5 6 7 8 9 10 11 12 13 14 151 16 2 3 4 5 6 7 8 9 10 11 12 13 14 151 16 2 3 4 5 6 7 8 9 10 11 12 13 14 151 16

independent unitizedlow correlation
(eyes-mouth)

med. correlation
(eyes-mouth)

high correlation
(eyes-mouth) 1.0

0.8

0.6

0.4

0.2

0.0

1

0

2

3

4

5

90

50
70

1

0

2

3

4

5

90

50
70

1

0

2

3

4

5

90

50
70

1

0

2

3

4

5

90

50
70

subroutines subroutines subroutines subroutines subroutines
2 3 4 5 7 8 9 10 11 12 13 151 166 14

Figure 3. Each heat map corresponds to a different data distribution. Each row indicates a different value of w, the cost associated with
learning a new subroutine. Each column corresponds to one of sixteen unique subroutines, shown at the bottom. Each cell represents the
proportion of samples in which a given subroutine was learned.

controlled by a weight parameter, w, reflecting the cost of
learning.

Loss(D) = ∑
p

MDL(p;D)+w× size(D)

The MDL of a program conditioned on the DSL is defined
as:

MDL(p;D) = ∑
f∈D

1[match(p, f) 6=⊥]

where 1[match(p, f) 6=⊥] indicates whether fragment f is
a subset of program p.

On each iteration, the highest-scoring fragment is thus the
one providing maximal compression of input programs
while minimizing the expansion of the DSL. After the frag-
ment with the highest score is selected and added into the
base DSL, we rewrite the original programs in terms of this
fragment. For example, if Circle(4,3,9) and Line(3,2,
3,3) are combined into one subroutine, then the program
shown above is re-written as below, where the red lines
below represent this new subroutine:

set(set((λ(move 4 3 (scale 9 (rotate 0 circle)) $0)),

(λ(move 4 4 (scale 2 (rotate 2 line)) $0))),

(λ(move 3 2 (scale 1 (rotate 0 (for 2 line))) $0)))

Because we do not allow fragments contained within already
learned subroutines to be proposed, this enforces the agent
to learn higher-order abstractions over previously learned
subroutines. The agent iterates through these three steps,
and stops learning new subroutines when the Loss over the
DSL does not decrease any further.

3.3. Grammar Induction by Library Compression

Once all new subroutines are added to the library, we con-
duct a depth-first tree search on each of the learned λ -
calculus expressions and match their prefix names and pa-
rameters (move(x,y), scale(r), rotate(a)) to distill
out the part-based And-Or grammar for smiley faces. Sub-
routines with the same prefix are merged into one Or node,
subroutines with unique prefix are left as And nodes. Fuzzy
matching of the prefix parameters is allowed.

4. Experiments
4.1. Dataset

The goal of our experiments was to explore how different
constraints on learning, supplied either by external variables
(i.e., the data distribution) or internal components of the
model (i.e., the cost of increasing the library size), jointly in-
fluenced the subroutines our algorithm learned. Building on
classic work investigating perceptual learning in cognitive
science (Goldstone, 2003; Austerweil & Griffiths, 2013),
we considered five data distributions, which varied in how
strongly particular facial features co-occurred. For our ex-
periments, we generated 100 samples containing 100 smiley
faces from each of the following data distributions:

• Independent: All features are sampled independently
with p=0.5, yielding faces that are often incoherent
(e.g., only possessing a single eye or no mouth).

• Low Correlation: All faces are coherent (i.e., contain-
ing at least a head, two eyes, and a mouth), and the
probability that the type of eyes and mouth will be

Library learning for structured object concepts

congruent (i.e., line eyes with line mouth) is equal to
0.4. Glasses appear with p=0.03.

• Med Correlation: Same as above, but the probability
of congruent eyes & mouth is equal to 0.8.

• High Correlation: Same as above, but the probability
of congruent eyes & mouth is equal to 1.0.

• Unitized: All faces are of two types, both appearing
with p = 0.5: one with eyes and mouth consisting of
lines and one with eyes and mouth consisting of circles,
both always wearing glasses.

4.2. Manipulating the cost of learning

In our experiments, we explored the consequences of vary-
ing w, the cost of learning, over a wide range , 0≤ w≤ 100.
We found that when w is small, complex configurations of
facial features tend to be learned in their entirety (Fig. 3).
As a consequence, the learned subroutines tend to be id-
iosyncratic to a small number of faces, and thus not reusable
across contexts. As w increases, learning complex subrou-
tines is disfavored, forcing the agent to discover regularities
in the data distribution and learn higher-order abstractions
that are reusable across a larger proportion of the dataset.
However, when w grows too large, learning anything new be-
comes infeasible (see bottom left of all heatmaps in Fig. 3).

4.3. Manipulating the data distribution

Insofar as our algorithm can exploit statistical regularities
in the co-occurrence of parts across different smiley faces,
we hypothesized that it would be better able to learn part-
like perceptual units (e.g., chunking both lenses comprising
glasses into a single part) and meaningful correlations be-
tween different parts (i.e., that line-eyes and line-mouths
tend to appear within the same face) when the data distribu-
tion supported these inferences. Over a wide range of w, we
found that in the fully unitized distribution, our algorithm
is more likely to learn complete faces (subroutines 14 & 15
in Fig. 3). When there is high correlation between types
of eyes and mouth, two types of “base” faces are learned
(subroutines 10 and 11). As the correlation decreases, more
subroutines are learned (subroutine 8, 9, 12 and 13). Finally,
in the fully independent distribution, the algorithm fails to
consistently learn any particular subroutine, as expected
(more columns omitted from Fig. 3 for clarity).

4.4. Sequence of subroutine learning

In the learning process, subroutines are learned across suc-
cessive iterations Fig 4A). As new subroutines are added to
the base library, the size of the library continues to increase.
Since input programs can be written in increasingly reusable
subroutines, the description length continues to decrease.

A

pr
ob

ab
ili

ty

iteration number
1 2 3

1.0

0.8

0.6

0.4

0.2

0.0

B

by first appearance of
each subroutine

face

mouthheadeyes glasses

AND

OR

Figure 4. (A) Probability of first appearance of each subroutine
across iterations, for the high-correlation data distribution and
where w=0.9. (B) Grammar induced by comparing and getting
unique primitive prefixes.

Across the first three iterations, the decrease of MDL dom-
inates the overall loss term; subsequently, the change in
MDL is negligible and cannot offset the cost of increasing
the size of the DSL, thus learning stops. We observed that
larger subroutines tended to be learned early on, and smaller
ones learned later (Fig 4A), reflecting the greater ability
of larger subroutines to compress the input programs, even
after accounting for their size.

4.5. Learning a grammar from a library of learned
subroutines

Using the high-correlation data distribution with w=0.9 as a
case study, we also explored the induction of a part-based
AND-OR grammar. Our approach was to exploit recur-
ring patterns across the ‘prefixes’ to our learned subrou-
tines. For example, subroutine (λ(move 3 2 (scale 1
(rotate 0 (for 2 line))) $0)) and (λ(move 3 2
(scale 1 (rotate 0 (for 2 circle))) $0)) share
the same prefix and are merged into an OR node representing
the eyes; likewise, (λ(move 4 4 (scale 2 (rotate 2
line)) $0)) and (λ(move 4 4 (scale 2 (rotate 2
circle)) $0)) are merged into the OR node representing
the mouth, yielding the grammar shown in Fig 4B.

5. Discussion
We presented a proof-of-concept method for learning higher-
order structural units within objects, represented as subrou-
tines in a graphics library, and investigated how the resulting
library of learned subroutines is jointly determined by the
data distribution and the cost of learning. Future work will
extend our proof-of-concept framework to model human per-
ceptual learning and semantic structure in human sketches.

Library learning for structured object concepts

6. Acknowledgments
We thank Nadia Polikarpova, Shraddha Barke and Rose
Kunkel for helpful discussion and feedback.

References
Austerweil, J. L. and Griffiths, T. L. A nonparametric

bayesian framework for constructing flexible feature rep-
resentations. Psychological review, 120(4):817, 2013.

Biederman, I. and Ju, G. Surface versus edge-based deter-
minants of visual recognition. Cognitive Psychology, 20
(1):38–64, 1988.

Ellis, K., Morales, L., Sablé-Meyer, M., Solar-Lezama, A.,
and Tenenbaum, J. Library learning for neurally-guided
bayesian program induction. In NeurIPS, 2018a.

Ellis, K., Ritchie, D., Solar-Lezama, A., and Tenenbaum,
J. B. Learning to infer graphics programs from hand-
drawn images. NIPS, 2018b.

Goldstone, R. L. Learning to perceive while perceiving to
learn. In Perceptual organization in vision, pp. 245–290.
Psychology Press, 2003.

Kulkarni, T. D., Kohli, P., Tenenbaum, J. B., and Mans-
inghka, V. Picture: A probabilistic programming lan-
guage for scene perception. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 4390–4399, 2015.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266):1332–1338, 2015.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gersh-
man, S. J. Building machines that learn and think like
people. Behavioral and Brain Sciences, 40, 2017.

Lee, D. D. and Seung, H. S. Learning the parts of objects
by non-negative matrix factorization. Nature, 401(6755):
788–791, 1999.

McCloud, S. Understanding Comics. HarperPerennial,
1994. ISBN 9780613027823. URL https://books.
google.com/books?id=oJ1vPwAACAAJ.

Palmer, S. E. Hierarchical structure in perceptual represen-
tation. Cognitive psychology, 9(4):441–474, 1977.

Solar Lezama, A. Program Synthesis By Sketching. PhD the-
sis, EECS Department, University of California, Berkeley,
Dec 2008. URL http://www.eecs.berkeley.edu/
Pubs/TechRpts/2008/EECS-2008-177.html.

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., and Goodman,
N. D. How to grow a mind: Statistics, structure, and
abstraction. science, 331(6022):1279–1285, 2011.

Yamins, D. L., Hong, H., Cadieu, C. F., Solomon, E. A.,
Seibert, D., and DiCarlo, J. J. Performance-optimized
hierarchical models predict neural responses in higher
visual cortex. Proceedings of the National Academy of
Sciences, 111(23):8619–8624, 2014.

https://books.google.com/books?id=oJ1vPwAACAAJ
https://books.google.com/books?id=oJ1vPwAACAAJ
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-177.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-177.html

