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Abstract

Our ability to share abstract knowledge with others is a defin-
ing feature of modern human intelligence. What information
do people choose to include in such communication? Here we
develop a novel physics-based video game to elicit natural lan-
guage responses on how this game works to teach other people.
We collected data from 238 participants and found that people
explicitly described the latent physical properties of the game
environment like mass and gravity in their responses. We also
found that people who performed better in the game also pro-
duced responses that covered more latent physical properties.
Taken together, our study provides novel insight into how peo-
ple communicate their understanding of physical dynamics in
natural language.

Keywords: intuitive physics; explanation; communication;
linguistic abstractions

Introduction
Much of what we learn about the world comes not from our
own experience but by learning from others, often via lan-
guage. For example, coaches often instruct kids on how dif-
ferent strokes affect the trajectory of a tennis ball; we were
taught since little not to sit in the way of wind to prevent
inhaling smoke at a barbecue. Our ability to transmit and
build upon abstract causal knowledge previously learned by
others is a fundamental aspect of modern human cognition
(Tomasello, Kruger, & Ratner, 1993; Boyd, Richerson, &
Henrich, 2011). This propensity for sharing abstract and gen-
eralizable knowledge has enabled us to accumulate rich infor-
mation about the structure of our world. How then do people
communicate about their structured knowledge to help others
to learn? What information do they choose to include?

Prior work investigating communication suggests that ex-
planations provide an important means of conveying abstract
causal knowledge (Lombrozo, 2006), yielding benefits for
one’s own (Chi, De Leeuw, Chiu, & LaVancher, 1994) or
others’ learning (Webb, 1982). Explanations often go beyond
what can be experienced, conveying abstractions and general-
izations (Voiklis & Corter, 2012; Schwartz, 1995). In particu-
lar, it has been shown that generic language (e.g. “Birds fly.”)
provides a simple and ubiquitous way to communicate gener-
alizations about categories (Tessler & Goodman, 2019). It has
also been studied how people communicate about the causal
relationship between different parts in a mechanical systems
(Huey, Walker, & Fan, 2021). However, our rich knowledge
about the world goes beyond just knowing about concepts and

detecting the mere presence of causal relationship between
variables: people build structured generative world models
that provide reliable predictions so as to behave appropriately
in our open-ended, dynamic environment and generalize to
various scenarios (Battaglia, Hamrick, & Tenenbaum, 2013).
Thus, how people are able to communicate about their world
model encoding the dynamics of the physical environment
poses a different challenge than communicating about con-
cepts or causal relationships. A more detailed characteriza-
tion of explanations on physical world models is critical for
advancing our understanding of how people transform their
everyday direct experience with the physical world into com-
pressed representations that explain how things work.

A wealth of research in intuitive physics has established
that people have rich world models that encode the underly-
ing dynamics of the physical world (Sanborn, Mansinghka,
& Griffiths, 2013; Ullman, Spelke, Battaglia, & Tenenbaum,
2017; Ullman, Stuhlmüller, Goodman, & Tenenbaum, 2018).
Such models not only enable people to make reliable phys-
ical predictions and inferences but also generalize to unpre-
dictable future tasks and situations, regardless of their for-
mal understanding of physics. However, it is less clear how
people are able to convert this implicit understanding of the
physical world to explicit knowledge that can be transmitted
to others. A better understanding of how people commu-
nicate about their intuitive physics knowledge will not only
shed light on how people encode physical abstractions in lan-
guage, but also supports a broader conceptualization of how
people’s internal world model is structured.

In this paper, we investigate how people transform their
direct intuitive physics experience into compressed forms to
teach other people using language, and identify what infor-
mation people choose to include in such communication. To
this end, we developed a novel physics-based video game to
elicit natural language explanations on how this game works.
Specifically, participants were asked to use a paddle to catch
balls of different masses in two environments where differ-
ent latent forces (e.g. gravity, wind) are at play. We then
ask them to write a short paragraph to teach someone who
has never played this game how this game works. To iden-
tify the distinctive information people choose to include, we
use a baseline group for comparison where responses were
produced in the absence of any explicit goal to teach an au-
dience how to play the game. Our results suggest that people



Direct Physics Experience Knowledge Transmission

Explanation

Description

“Factor in gravity...”

������������
������

������������
��

����
���������

������
���
��
�	

�
���
���������
�	

����
�����


��
���

��������������
���

�

��

A B

“A circle with a ...”

Figure 1: Two-stage experiment. (A) Stage one: direct physics experience through the game, participants played a physics-
based video game to catch the ball with the red paddle under different settings. Physical concepts are annotated in dashed lines,
visual concepts in solid lines. (B) Stage two: natural language elicitation, participants were randomly assigned to either explain
or to describe the game upon finishing the game.

can successfully perform this task and that the latent physical
properties like mass and gravity were explicitly encoded in
their language. Furthermore, we found that those who per-
formed better in the game also mentioned more latent physi-
cal concepts.

Experiment
Participants
238 participants (142 female; Meanage = 31.8 years) recruited
from Prolific completed the experiment. We included data
from all participants, as they all met our preregistered inclu-
sion criteria. Participants provided informed consent in ac-
cordance with the UC San Diego IRB. The experiment lasted
approximately 40 minutes and participants were paid $14/hr
based on this expected completion time.

Task environment
To probe physical prediction in this experiment, we ask par-
ticipants to play a virtual game of catch. A ball is launched
from a point on a large circle, and the participants’ task is to
move a rectangular paddle along the outside of the circle to
catch the ball (see Figure 1A for an example). Each trial be-
gan with the paddle placed at 3 o’clock, participants then ad-
justed the paddle’s location with the arrow keys. When partic-
ipants were happy with the paddle’s location, they launched
the ball using the spacebar and as soon as the ball was
launched, they could no longer adjust the paddle location.
The ball’s launch trajectory was animated. If the ball made
contact with any part of the paddle, this was considered a
success. Participants then pressed the spacebar to proceed to
the next trial.

We manipulate the following variables in each trial: the en-
vironment where the participants preform this task, the mass
of the ball, the location where the ball was launched, and the

force the ball was launched with. Each of these design ele-
ments is explained below.

In order to introduce different latent forces that require dif-
ferent predictions to maintain high accuracy, we use two en-
vironments cued by different background images. In one en-
vironment, there is only gravity (Fg) pulling downward; and
in the other environment, there is both a downward grav-
ity force and a rightward wind force (Fw). As these forces
are evocative of indoor/outdoor environments, we use the in-
door/outdoor nomenclature for simplicity throughout the pa-
per. To elicit participants’ inferences about physical param-
eters, we use three types of balls: light, medium and heavy.
All balls are the same size, but have different colors and tex-
tures, allowing participants to learn a color/texture → mass
mapping throughout the experiment. The correspondence be-
tween the color/texture of the ball and its mass is shuffled
across participants. As a way of measuring how well people
could make predictions under different physical conditions,
the ball appears at a location sampled from each of the 12
hours on a clock face, and is launched towards the center of
the big circle with an initial force whose direction and mag-
nitude were indicated by an arrow, either strong (red) or soft
(orange).

We manipulate mass (light, medium, heavy) and environ-
ment (indoor, outdoor) using a “2× 3 factorial design” such
that succeeding on any given trial required combining these
two latent variables (see Figure 2A). Each ball-environment
combination consists of 24 trials (12 launching locations × 2
launching forces), resulting in 144 trials in total.

In order to probe generalization and thus deeper under-
standing of physical dynamics, we divide the game into a
training phase and test phase, the division was not visible to
participants. In the training phase, participants are exposed
to five of the six ball-environment combinations. The subse-
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Figure 2: (A) 2×3 design matrix, where participants were trained on 5 out of these 6 cells and asked to generalize to the other
cell. (B) RMSE for all 6 conditions, black thick line is the mean. The dashed red line represents expected performance under
random guessing (Rinaman et al., 1996).

quent test phase only includes trials with the remaining ball-
environment combination. In order to generalize to the test
phase, the participants need to successfully infer the under-
lying structure (the existence of gravity/wind) as well as the
specific parameters (how strong the gravity/wind is, and how
heavy the balls are) of the physical environment. We ran-
domly assign participants to each of the six ball-environment
combinations as their held-out test phase.

Natural language elicitation
After the participants have finished the game, they were ran-
domly assigned to either explain or to describe (see Figure
1B), resulting in 119 participants in each condition. In the
explanation condition, they were given the following prompt:

“Imagine someone who has never played this game before
but is interested in learning how to play. What would you
tell them so that they understand where to put the paddle on
any given trial? Please write a short paragraph that provides
them with the most important information to help them suc-
ceed.”

in the description condition, they were prompted to:
“Imagine someone who has never played this game before

but is interested in picking it up at the store. What would
you tell them so that they could identify it based on a few
screenshots? Please write a short paragraph that provides
them with the most important information to help them pick
out this game from a lineup of other similar-looking ones.”

Results
How well can people play this game?
Given that participants had no prior exposure to this task en-
vironment, we first sought to evaluate how accurate partici-
pants’ predictions were in absolute terms. On each trial, we
measured the participants’ paddle location, the ball’s ground
truth landing location when it crossed the large circle, and
the angular difference between them. To quantify accuracy
of participants’ behavior, the root average squared devia-
tion from the ground truth landing location in degrees was
analyzed (root mean squared error, RMSE). We calculated
RMSE for the first and second half of training, and test phase,
collapsing over the feature dimensions that varied (launch-

ing force, launching location, ball mass, environment) be-
cause the design was carefully counterbalanced such that
each feature was equally likely to be practiced. Figure 2B
shows RMSE for all 6 conditions. Participants’ performance
was significantly above chance at every point during this ex-
periment (t = −73.16, p < 0.001). Initially, RMSE was
high (mean=56.22◦), presumably reflecting the fact that par-
ticipants were uncertain about the physical dynamics when
they were first introduced to this task context; participants
would have faced high error when their estimates of either
the structure (e.g. the existence of wind in the outdoor en-
vironment) or the parameter (e.g. the mass of the balls, the
magnitude of the wind, etc.) was wrong. Figure 1A shows
an example of how different estimates lead to very differ-
ent predictions of the ball’s landing location. By the end of
the experiment, however, participants significantly improved
(mean=40.79◦; b = −6.55, t = −2.90, p < 0.01). Different
conditions showed similarly low error rates, with the excep-
tion of the lightest ball in the outdoor environment, reflecting
the fact that the lightest ball’s behavior is relatively hard to
predict when wind is at play. Broadly, this suggests that while
people may have struggled to learn the mechanics of the task
at the beginning, they rapidly improve over time.

How are explanations different from descriptions?
Given participants’ successful learning and generalization,
the next question we ask is how were people able to convey
their direct physical experience in natural language such that
they can explain how this game works to someone else. In
other words, what information do people choose to include in
their explanations? One hypothesis is that people will choose
to directly convey their raw experience. Critically, on this
view, they will put an emphasis on the observable visual fea-
tures of the game. However, another possibility is that partici-
pants will emphasize the mechanics of the game but ground it
in the visual attributes. In this view, rather than only convey-
ing information about the observable features of the game,
people will distill their raw experience into the latent dynam-
ics of the physical world that they inferred from raw experi-
ence, but ground it in the visual components of the game to
better explain to a novice about how this game works. Finally,
a third account is that explanations fully abstract away from
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Figure 3: Difference of normalized word frequency between
explanations and descriptions. Blue bars represent words that
are more frequently used in explanation than description, red
for the other way around.

the surface details, and just preserve the functional informa-
tion, omitting mentioning perceptual features.

To test these hypotheses and identify the properties that are
distinctive of explanations, we use description as a baseline
for comparison, which were produced in the absence of the
goal to teach someone how to play this game. In this sec-
tion, we first analyze the raw responses from the two con-
ditions. We found that explanations produced by participants
tended to be longer than the produced descriptions in terms of
word counts (Meanexp = 63.14, Meandes = 41.12; b = 22.03,
t = 4.54, p < 0.001), suggesting that people devoted more ef-
fort and contained more information when producing expla-
nations than descriptions. We further observed that the distri-
bution of word count for explanation is long-tailed, meaning
that some participants chose to write long paragraphs when
prompted to explain, whereas the word count distribution for
the description group is more concentrated at the mean. To
rigorously evaluate whether these two distributions are dif-
ferent, we computed the Jensen-Shannon distance (JSD) be-
tween the word count distributions of the two conditions. We
compared the JSD to a null distribution generated by ran-
domly assigning responses to the two conditions (Nichols
& Holmes, 2002) and found that the distance between the
two conditions was greater than that expected under the null
(p < 0.05).

Beyond word counts, to explore any systematic differences
in the words used in explanations or descriptions, we inves-
tigated the frequency of each word used in both conditions.
We visualize the difference of the normalized frequencies
in Figure 3. This demonstrates that a variety of concepts
from both latent physical properties and visual components
were presented in language responses collected. Neverthe-
less, words pertaining to game mechanics and latent physi-
cal properties (“wind”, “gravity”, “force”, “direction”) were
more frequently mentioned in explanations, whereas words
that describes the game (“circle”, “one”, “two”, “three”) were
more frequently used in descriptions.

The overall statistics in word counts and most diagnostic
words for each condition provides us with insight on the lit-
eral overlap in participants’ responses when prompted to ei-
ther explain or describe. We next sought to explore how the
information being conveyed in the two conditions are seman-

“The room has gravity. The outer area also 
has gravity but wind blows toward east. 
The order that the ball goes farthest to 
the least farthest is pink, blue, brown.”

“Catch the three colored balls, orange, 
blue and pink, but be careful because 
each ball acts di�erently and each 
map/location has its own unique gravity.” 

“A tennis inspired game in which the aim is to 
move the paddle and bounce the ball back.”
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Figure 4: 2D projection for neural language model vector
embeddings of responses, showing high degree of separation
between explanation and description responses. Three data
points were annotated as examples for a typical explanation
response, a typical description response, and a boundary re-
sponse, respectively.

tically different. To explore this question, we leveraged the
rich semantic information encoded in the large pre-trained
neural language models developed recently by extracting the
embeddings of these responses using the language model.
Specifically, we used the Sentence Transformers (Reimers &
Gurevych, 2019) to obtain a contextual vector embedding (di-
mensionality d = 384) for each response and then applied di-
mensionality reduction to project the response embeddings to
a 2D space for visualization (see Figure 4).

For a simple measure of the separability of the two re-
sponse types (Lorena, Garcia, Lehmann, Souto, & Ho, 2019),
we fit a linear support vector machine classifier (Cristianini,
Shawe-Taylor, et al., 2000) to the embeddings. We use 5-fold
cross-validation (0.7/0.3 train/test ratio) and obtain a mean
accuracy of 0.92±0.01. This relatively high degree of sepa-
ration indicates significant semantic differences between the
language used by participants in these two conditions (see the
three annotated responses as typical examples for explanation
or description in Figure 4). Together, these findings suggest
that participants used different language both in terms of lin-
guistics and semantics when prompted to explain or describe.

How well do the concepts people mentioned
correspond to the task environment?
In the previous section, by analyzing raw linguistic data,
we found that responses from explanation and description
are significantly different form each other in terms of word
counts, most diagnostic vocabularies, and latent embeddings,



but this does not provide us with a clear insight on how the in-
formation being conveyed in the two conditions are grounded
in the specific relevant concepts for this task environment. To
this end, we annotated the collected linguistic corpus using
13 different tags. We focused on two domains of conceptual
content used in this game. First, we have 6 tags for language
that conveys the physical properties in the game: these are
the physical parameters that define a generative model where
each trial is sampled from, thus determine the trajectory of
the ball, and where the participants should place the paddle.
These 6 tags covers the main components of this generative
model. Given participants’ successful learning and general-
ization, we hypothesize that they should be able to cover the
basic components of this generative model in their language
response when prompted to give a good explanation for how
to play this game. Second, each of the latent physical pa-
rameters only becomes observable by being bound to visible
attributes of each scene – these are what participants directly
observe from on a single trial. To accommodate this, we made
a tag for every visual component on the task display, resulting
in another 6 tags. The last tag was for miscellaneous infor-
mation (see Figure 5 for all the tags we used). The annota-
tion of language responses using tags was performed by one
of the authors blind to the prompt condition (i.e. explana-
tion/description).

Leveraging these semantic part annotations, we found that
the distribution of tags are significantly different across the
two conditions (χ2(12) = 251.98, p < 0.001): explanations
invoke the key physical concepts much more frequently than
descriptions, highlighting the centrality of these concepts for
explanatory responses. Both descriptions and explanations
invoke visual concepts, though these are more common in
descriptions. The reduced emphasis on visual concepts in ex-
planations replicated the findings in the literature on verbal
explanations (Legare & Lombrozo, 2014) and on visual ex-
planations (Huey et al., 2021), in which explanations had a
reduced emphasis on perceptually salient but irrelevant fea-
tures.

It is worth noting that even though explanations had a sys-
tematic emphasis on physical concepts compared to descrip-
tions, a number of visual concepts (e.g. color of the balls,
background image, etc.) were still frequently mentioned.
This is because physical concepts were grounded by the game
environment, participants often need to utilize visual concepts
to establish a working context for physical concepts they want
to explain, in other words, physical concepts would not be
sensible without the presence of visual features. For exam-
ple, in “View the three balls as being one heavy (brown), one
medium (pink), one light (blue). The room has normal grav-
ity and the forest has offset gravity to the bottom right”, the
visual concepts, “brown”, “pink” (color of the balls), “room”,
“forest” (background image), etc., provided a critical con-
text to explain the concept of mass and forces. Together,
these findings suggest that when prompted to explain, peo-
ple neither only focused on visual attributes of the game, nor
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Figure 5: Frequency of different tags for the two conditions,
normalized by the total number of tags in each condition.

did they fully abstracted away from the surface details, but
rather explained the latent physical properties and mechanics
by grounding them in the visual components.

Do all explanations put a strong emphasis on the latent me-
chanics of the game? We next sought to explore the variabil-
ity of responses within the explanation condition. To this end,
we designed another way of tagging the responses: explana-
tions were broken down into two categories, causal or pro-
cedural. A causal response encodes the latent dynamics of
the game but does not specify how someone should exactly
place their paddle on a given trial. A procedural response,
on the other hand, details a procedure that someone should
follow, but does not identify any underlying causal forces or
relations. See below for an example of each category:

Causal: “The blue ball is heavy and immediately drops
close to where it lands, the yellow is light and is less impacted
by gravity, the red is in the middle point of these. In the room
there is no wind effecting the balls path but outside there is
a wind blowing the balls to the right to factor into the balls
flight path.”

Procedural: “...for the blue ball, you should often place
the paddle across the circle from where the ball launches,
although it has a tendency to move to the left. For the pink
ball, it does not launch very far and tends to fall. If the pink
ball is launching from the bottom, place the paddle slightly to
the left of the ball because it will fall and will not move far. If
the pink ball is launching from the top of the circle, place...”

In our initial exploration of the prevalence of “causal” and
“procedural” explanations, one of the authors annotated each
response. This preliminary analysis suggests that causal ex-
planations (58.14%) were more prevalent than procedural
explanations (23.26%), with some explanations not falling
neatly into either category (18.60%). To provide some ex-
ternal validation that the explanations that had been tagged as
“causal” and “procedural” were semantically distinguishable,
we conducted 5-fold SVM classification analysis on their
Sentence Transformer embeddings, and found that they could
be classified with reasonably high accuracy (0.88±0.07).



How does the content of explanations relate to task
performance?
Previous research has suggested that when instructing
novices, experts will make more abstract statements and
fewer concrete statements than beginners (Hinds, Patterson,
& Pfeffer, 2001; Chi, Feltovich, & Glaser, 1981), as well as
use more advanced concepts and fewer basic concepts (Hinds
et al., 2001). In line with this idea, we hypothesize that par-
ticipants who performed well on this game should be able to
provide more abstract explanations when prompted, and at
the same time mention more latent physical concepts in their
responses than those who performed less well in the game.

To this end, we define a simple metric to quantify the qual-
ity of a response with respect to the two kinds of semantic
concepts discussed above: physical and visual. We define RP
and RV as the recall over the set of physical concepts P and vi-
sual concepts V , respectively. Denoting T (x) to be the set of
tags appearing in response x, we can calculate physical/visual
recall for a given response x as follows:

RP(x) =
|T (x)∩P|

|P|
,RV (x) =

|T (x)∩V |
|V |

A response with perfect recall for physical and/or visual
concepts means that all relevant corresponding concepts were
covered. We use participants’ test phase performance as a
proxy for task performance, which was measured by their
RMSE compared to the ground truth landing locations (lower
RMSE means better performance).

We group responses by visual and physical recall respec-
tively. Responses with above median physical recall Rp ex-
hibit a lower RMSE compared with responses with below-
median Rp (above: 32.70◦, below: 43.06◦; t(116) = 3.27,
p < 0.01). For the case of visual concepts, we did not
find a significant difference on performance between groups
(above: 35.18◦, below: 39.18◦; t(116) = 1.11, p = 0.27).
Furthermore, we found a negative correlation between physi-
cal recall Rp and RMSE (r = −0.32, p < 0.001), but did not
find a strong correlation between visual recall Rv and RMSE
(r = −0.18, p = 0.06). Taken together, these results sug-
gest that participants who performed well on this game tend
to mention more latent physical concepts compared to those
who performed less well, echoing previous findings which
suggests that experts use more advanced concepts and fewer
basic concepts.

To test our hypothesis about the interaction between perfor-
mance and abstractness, we compare the RMSE of the causal
explanations and the procedural explanations, and found a
significant difference (causal: 33.96◦, procedural: 43.98◦;
t(116) = 3.01, p < 0.01). We further compared the per-
centage of each type of explanation in different performance
groups. As is shown in Figure 6, the distribution of expla-
nation types for participants performing above the median is
different from that for below-median participants (χ2(2) =
10.49, p < 0.01). Among participants performing above the
median on the task, the proportion of causal explanations is
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Figure 6: Proportions of
causal and procedural
explanations in different
performance groups.
Category misc. is for
explanations that do not
fall neatly into either
category, e.g., “The game
is great but slightly miss-
ing the ball is not fun.
Especially after thinking
you have mastered it”.

much higher that those in the bottom half. This suggests that
participants who performed well on this game indeed tend to
give more abstract causal explanations as opposed to provid-
ing detailed procedures.

Discussion

How do people transmit knowledge about intuitive physics to
others? This paper investigated how direct intuitive physics
experience was compressed into language and identified the
critical information people chose to include in such commu-
nication. We developed a novel online physics-based video
game to simulate intuitive physics experience and asked par-
ticipants to teach someone else to play this game in natural
language. By comparing to a baseline group, we found that
people chose to explicitly describe the latent physical prop-
erties of the game environment like mass and gravity when
teaching others. We also found that those who performed
well in this game provided more abstract explanations and at
the same time covered more latent physical concepts rather
than concrete visual features in their response than those who
performed less well in the game.

Knowledge built culturally across generations allows hu-
mans to learn far more than an individual could glean from
their own experience in a lifetime. Our work sheds light on
how abstract causal knowledge about intuitive physics can be
transmitted between individuals. In future work, we plan to
investigate how people learn to play intuitive physics games
guided by natural language explanations, possibly more effi-
ciently. Future experiments could assign each participant as
either teacher or student where the teacher plays the game
first and pass along explanations to the student, who proceeds
with the explanation to explore the underlying dynamics of
the game. Investigating the student’s learning efficiency and
generalization behavior will be critical to expose the role of
culturally transmitted knowledge in individual’s learning.

In sum, our paper reveals novel insights about how intuitive
physics experience was compressed into natural language in
order to teach someone else. Insights from such studies may
lead to a deeper understanding of how we encode and ex-
plain abstract physical knowledge as well as facilitating AI
research in human-machine collaboration.
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