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Abstract

People can produce drawings of specific entities (e.g.,
Garfield), as well as general categories (e.g., “cat”). What
explains this ability to produce such varied drawings of even
highly familiar object concepts? We hypothesized that drawing
objects at different levels of abstraction depends on both sen-
sory information and representational goals, such that draw-
ings intended to portray a recently seen object preserve more
detail than those intended to represent a category. Participants
drew objects cued either with a photo or a category label. For
each cue type, half the participants aimed to draw a specific
exemplar; the other half aimed to draw the category. We found
that label-cued category drawings were the most recogniz-
able at the basic level, whereas photo-cued exemplar drawings
were the least recognizable. Together, these findings highlight
the importance of task context for explaining how people use
drawings to communicate visual concepts in different ways.
Keywords: drawings; sketch understanding; categories; per-
ception; visual production

Introduction
One of the most distinctive aspects of human communication
is that it goes beyond vocal production — humans have de-
vised many ways to make their ideas both visible and durable.
From etchings on cave walls to modern digital displays, some
of the most significant inventions in human history include
technologies that externalize our thoughts in visual form. De-
spite the importance of such technologies, little is known
about how the human mind is capable of using them in such
varied ways. Perhaps the most basic and versatile of these
technologies is drawing.

Drawing predates the invention of writing (Clottes, 2008)
and is pervasive across many cultures (Gombrich, 1989). It
has long inspired scientists to investigate the mental repre-
sentation of concepts in children (Minsky and Papert, 1972;
Karmiloff-Smith, 1990) and clinical populations (Bozeat
et al., 2003; Chen and Goedert, 2012). Despite drawing’s
importance as a technology for expressing human knowl-
edge, the underlying cognitive mechanisms underpinning our
ability to produce such varied drawings are relatively un-
known. In particular, prior work has seldom addressed the
question of how drawing enables the flexible expression of
meanings across different levels of visual abstraction, rang-
ing from detailed drawings of specific objects to sparse draw-
ings that communicate information about basic-level cate-
gories (Fig. 1). As a consequence, theories of how visual
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Figure 1: Humans use drawings to communicate meanings
spanning many levels of abstraction.

images convey information at different levels of abstraction
are comparatively impoverished, by contrast with theories of
how such semantic hierarchies are encoded in natural lan-
guage (Miller, 1995; Xu and Tenenbaum, 2007; Rosch et al.,
1976).

Here we investigate the cognitive and task constraints that
enable such flexible expression of visual knowledge. Specif-
ically, we explore the hypothesis that the ability to draw ob-
jects at different levels of abstraction is jointly dependent on
sensory information and representational goals (i.e., the sub-
ject of the drawing), such that drawings intended to portray a
specific exemplar contain different semantic information than
drawings intended to represent a category. To test this hy-
pothesis, we conducted a systematic investigation of the se-
mantic information contained in drawings of a wide variety
of visual objects using a combination of crowdsourcing and
model-based analyses.

Our approach builds on a growing body of literature us-
ing drawing paradigms to investigate various aspects of cog-
nition, including learning (Fan et al., 2018; Fiorella and
Zhang, 2018), communication Hawkins et al. (2019); Fan
et al. (2020), memory (Bainbridge et al., 2019; Roberts and
Wammes, 2020), and development (Dillon, 2020; Long et al.,
2019). A key limitation of this prior work is that it has gener-
ally restricted their focus to drawings produced at a specific
level of abstraction by using either category labels or natural
images as cues, potentially restricting the dynamic range over
which drawings can vary. To address this limitation, here we
directly manipulate sensory information and representational
goals within the same paradigm, allowing us to disentangle
their contributions to the semantic content of the resulting
drawing.
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Figure 2: Study 1 Task Procedure. A: On photo-cue trials,
participants aimed to produce a drawing of the photographed
exemplar. B: On label-cue trials, participants aimed to pro-
duce a drawing of the labeled category.

Study 1: How do drawings cued by
prototypical exemplars differ from drawings

cued by category labels?
The goal of our first study was to explore the extent to which
drawings of objects produced in the presence of a typical ex-
emplar differed from drawings based solely on prior semantic
knowledge of that category. Towards this end, we manipu-
lated whether participants were cued with a photo of a highly
prototypical exemplar or with a category label before produc-
ing their drawing (Fig. 2). Insofar as the photo provided a
visual reminder to participants of the diagnostic properties
of each object, we predicted that photo-cued drawings would
be easier to recognize at the category level than label-cued
ones. Alternatively, insofar as category labels more strongly
activate information that is diagnostic of basic-level category
membership than even photos of typical exemplars, we pre-
dicted that label-cued drawings would be more recognizable
at the category level Lupyan and Thompson-Schill (2012).

Methods
Participants 57 English-speaking adults recruited via
Amazon Mechanical Turk (AMT) completed the study (29
male, 36.8 years). Each participant received $2.00 for their
participation (approx. $12/hr) and provided informed consent
as per our institution’s IRB. Data from 4 participants who met
our pre-registered criteria were excluded from further analy-
ses.1

Stimuli We obtained 3 color photographs of prototypical
exemplars from each of 12 familiar object categories: air-
plane, bike, bird, car, cat, chair, cup, hat, house, rabbit, tree,
and watch.

Task Procedure Each participant produced a total of 12
drawings, one for each object category. Six of these draw-
ings were cued using a category label and the other six us-
ing a photo of one of 3 typical exemplars from that category
(Fig. 2). On label-cue trials, participants were instructed to

1Data from an entire session were excluded if it contained at least
three blank drawings, at least three ‘incomplete’ drawings consisting
of a single stroke, or at least three invalid drawings (containing text,
surrounding context, or other inappropriate content).

“make a drawing that would help someone else looking only
at your drawing guess which word you were prompted with”
corresponding to a category goal. On photo-cue trials, par-
ticipants were instructed to “make a drawing that would help
someone else looking only at your drawing guess which im-
age you were prompted with, out of a lineup containing other
similar images” corresponding to a basic-level goal.

Participants used their cursor to draw in black ink on a dig-
ital canvas (canvas: 300× 300px; stroke width: 5px). Each
stroke was rendered in real-time on the participant’s screen
as they drew and could not be deleted once drawn. Both the
label and photo cues were onscreen throughout the entire trial
and participants could take as long as they wished to complete
their drawing (Fig. 3A).

The assignment of cue type to object category was random-
ized across participants, as was the order in which the object
categories were displayed. At the end of the session, par-
ticipants were prompted to complete a survey in which they
were asked to optionally provide the following information:
sex, age, drawing device, and self-reported drawing skill.

Measuring semantic information in drawings This study
sought to evaluate potential differences in the semantic infor-
mation conveyed by photo-cue and label-cue drawings, which
can in principle be dissociable from their low-level image
properties (Fan et al., 2018). Measuring the semantic con-
tent in a drawing that determines its recognizability, however,
requires a principled approach for encoding its high-level vi-
sual properties. Here we leverage prior work validating the
use of deep convolutional neural network (CNN) models to
encode such properties in drawings (Fan et al., 2018).

Specifically, we used VGG-19 (Simonyan and Zisserman,
2014) trained to categorize objects in photos from the Im-
agenet database (Simonyan and Zisserman, 2014) to extract
high-level feature-vector representations of each sketch. Each
4096-dimensional feature vector reflected VGG-19 activa-
tions to drawings in the second fully-connected layer of the
network (i.e., fc6). To extract the degree to which each
drawing expressed the target concept, we applied a 12-way
logistic classifier with L2 regularization, using 5-fold cross-
validation, to predict the category label for each drawn con-
cept. Because this type of classifier assigns a probability
value to each object, it can be used to evaluate the strength
of evidence for each category contained in each drawing. We
then used these probabilities to derive a measure that quanti-
fies the relative evidence for the cued category compared to
the others. Specifically, we define category evidence to be the
logodds ratio between the cued category and all other cate-
gories (Fig. 3C).

Results
Drawings cued by typical exemplars are more recogniz-
able than those cued by category labels alone To analyze
differences in category evidence between conditions, we fit a
linear mixed-effects model that included condition (i.e. photo
vs. text) as a predictor, as well as random intercepts for par-
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Figure 3: Study 1 Results. A: Example drawings. B: Number of strokes per drawing in the photo-cue and label-cue conditions.
C: Category evidence assigned to the target category by classifier. Error bars represent 95% bootstrap confidence intervals.

ticipants and item. In this and subsequent statistical analyses,
the best-performing linear mixed-effects model was identified
using nested model comparison. We found that photo-cue
drawings contained more category evidence than label-cue
drawings (photo: 1.86, label: 0.978, b =−0.875, t =−2.86,
p = 7.08e−03), suggesting that the availability of a photo of
a typical exemplar may have improved participants’ ability to
include category-diagnostic features in their drawing.

Drawings cued by typical exemplars contain similar
amounts of detail to those cued by category labels alone
On photo-cue trials, participants had persistent access to a vi-
sual reminder of how a typical exemplar in the cued category
looked. One potential explanation for their greater recogniz-
ability is that participants leveraged this additional informa-
tion to spend more time on each trial producing drawings of
greater detail. To test this possibility, we analyzed the number
of strokes and the amount of time participants used to produce
each drawing by fitting a linear mixed-effects model that in-
cluded condition as a predictor (i.e., photo-cue vs. label-cue),
as well as random slopes and intercepts for participants, and
random intercepts for each item (i.e., the photo or the label).
Neither analysis revealed reliable differences between condi-
tions: participants used a similar number of strokes (photo:
10.2 strokes, label: 10.8 strokes, b = −0.675, t = −0.502,
p = 0.618) and spent a similar amount of time (photo: 31500
ms, label: 25600 ms, b = −5960, t = −1.75, p = 0.0876;
Fig. 3B) on each drawing. These results suggest that despite
having additional visual information available on photo-cue
trials, participants expended similar amounts of effort pro-
ducing drawings in both conditions.

Study 2: Disentangling the contributions of
sensory information, goals, and typicality

In Study 1, we found that drawings produced while viewing a
typical exemplar contained more semantically relevant infor-
mation about the cued category. These results seem to suggest

that photos generally provide useful reminders to participants
of the category-diagnostic properties of objects.

However, two confounds complicate this interpretation:
First, participants cued with a photo were also instructed
to produce drawings that would be discriminable at the ex-
emplar level, while participants cued with a label were in-
structed to produce drawings that would be recognizable at
the category level. Thus it is not clear whether the differences
we observed are primarily due to the availability of sensory
information (i.e., photo vs. label) or to the representational
goals (i.e., to draw a category or exemplar) participants had.

Second, the 36 photo-cues in Study 1 were all highly pro-
totypical and perceptually similar to one another. Thus it is
not clear whether participants were more successful in pro-
ducing more easily classifiable drawings on photo-cue trials
due to the availability of sensory information per se, or to low
image variation, reflecting the prototypicality of these exem-
plars. To address these methodological limitations, the goal
of Study 2 was to independently manipulate sensory informa-
tion and representational goals, as well as test an expanded
set of categories, each containing a larger and more heteroge-
neous set of exemplar images.

Drawing Task

Participants We recruited 384 participants (128 female,
25.9 years) to participate in our study via Prolific. Each
participant received $6.00 for their participation (approx.
$12/hr). We did not exclude data from any participant, as
none met our pre-registered exclusion criteria.

Stimuli We included 32 basic-level categories: airplane,
ape, axe, blimp, bread, butterfly, car (sedan), castle, cat, cup,
elephant, fish, flower, hat, hotdog, jack-o-lantern, jellyfish,
kangaroo, lion, motorcycle, mushroom, piano, raccoon, ray,
saw, scorpion, skyscraper, snake, squirrel, tree, windmill, and
window. Each category contained 32 exemplars selected from
the photographs included in the Sketchy dataset (Sangkloy
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Figure 4: Study 2 Task Procedure. Participants were ran-
domly assigned to one of two goal conditions (i.e., exemplar,
category) and one of two cue-type conditions (i.e., photo, la-
bel).

et al., 2016). These categories were selected to span a wide
range of familiar concepts and were balanced with respect to
animacy, size, familiarity, and artificiality. Moreover, the im-
ages within each category were selected to vary with respect
to both category-orthogonal properties (e.g., pose, viewpoint)
as well as category-relevant properties (e.g., typicality).

Task Procedure We independently manipulated sensory
information and representational goals across participants,
such that each participant was pseudorandomly assigned to
a cue type (i.e., photo, label) × goal (i.e., exemplar, category)
condition (Fig. 4; N=96 participants per condition).

In the photo-cue × exemplar-goal condition, participants
were instructed to: “make a drawing that would help some-
one else looking only at your drawing guess which image you
were prompted with, out of a lineup containing other similar
images.” 2 In the label-cue × category-goal condition, par-
ticipants were instructed to: “make a drawing that would help
someone else looking only at your drawing guess which word
you were prompted with.” 3 In the photo-cue × category-goal
condition, participants were instructed to: “make a drawing
that is recognizable, but not one that could be matched to the
image I was shown.” In the label-cue × exemplar-goal con-
dition, participants were instructed to visualize and “draw a
specific object, rather than a general object category.”

Each participant in Study 2 made drawings of 32 objects,
with one drawing per category. To equate the total amount
of preparation time participants in all four groups had before
beginning their drawing, the cue was always presented for
8 seconds and then removed before participants could begin
their drawing. 4 The sequence in which categories appeared

2These were the same instructions that photo-cue participants re-
ceived in Study 1.

3These were the same instructions that label-cue participants re-
ceived in Study 1.

4As a consequence, Study 2 participants who were cued with

across trials was randomized across participants, but the num-
ber of times a given photo was presented was balanced, such
that each photo served as the cue 3 times in Study 2. The
resulting dataset contained 12,288 sketches.

Measuring image typicality
Given the greater variability between exemplars within each
category, we sought to investigate potential relationships be-
tween the semantic properties of each photo — namely, how
prototypical it was — and the properties of the resulting draw-
ing. Towards this end, we crowdsourced typicality ratings for
each photo.

Participants 88 participants (42 male, 29.2 years) were re-
cruited via Prolific. Each participant received $3.00 for their
participation in the 15-minute study (approx. $12/hr). Data
from 8 participants who did not meet our exclusion criteria5

were excluded from further analyses.

Task procedure Each participant was presented with the
prompt (”How well does this picture fit your idea or image of
the category?”), a series of 128 images, and was asked to pro-
vide typicality judgments on a 5-point Likert scale: ”Not at
all”, ”Somewhat”, ”Moderately”, ”Very”, and ”Extremely”.
In each session, there were 4 images from each of the 32 cat-
egories. This study yielded 10,240 ratings, such that each
photo was rated 10 times.

Results
Differences in the amount of detail and effort between
groups Given the results of Study 1, we did not strongly
expect groups would differ in the amount of detail and ef-
fort participants would expend during drawing production in
Study 2. Nevertheless, to evaluate any potential differences
revealed by this larger dataset, we again analyzed how much
time and how many strokes participants used to make each
drawing.

To test this possibility, we analyzed the number of strokes
and the amount of time participants used to produce each
drawing using a series of nested model comparisons among
linear mixed-effects models varying in complexity. We found
that the best-performing statistical model contained fixed ef-
fects for cue type and goal (but no interaction between them),
as well as random intercepts for participant and category.
Using this model to predict the number of strokes partici-
pants used, we found a reliable main effect of representa-
tional goal (exemplar: 13.6 strokes, category: 9.83 strokes,
b = 3.48, t = 9.32, p < 2e−16), such that participants in-
tending to draw specific exemplars produced more detailed
drawings than those intending to draw the basic-level cate-
gory, regardless of cue type (Fig. 5B). The same model also

a photo did not have persistent visual access to this image while
producing their drawing, while Study 1 participants did.

5Data from an entire session were excluded if at least 4 of 8 catch
trials were failed, the same option was chosen 8 times in a row, twice
in the session, or trials were rated at random (defined by abnormally
low correlation with other raters).
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Figure 5: Study 2 Results. A: Example drawings from each condition. B: Number of strokes per drawing for each condition.
C: Category-level evidence across conditions. D: Variance of feature vectors for drawings within-category, for each condition.
E: Relationship between category evidence and typicality among photo-cue drawings. Error bars represent 95% bootstrap
confidence intervals.

revealed a main effect of cue type (photo: 12.5 strokes, label:
10.9 strokes, b=−1.33, t =−3.55, p= 4.31e−04), such that
participants who were cued with a photo used more strokes
than those cued with a label, regardless of their representa-
tional goal. When analyzing the amount of time participants
spent drawing, we found a reliable main effect of represen-
tational goal (exemplar: 15.3s, category: 18.7s, b = 3.38,
t = 4.96, p = 1.09e−06) but not of cue type (photo: 17.0s,
label: 17.1s, b = −0.0750, t = −0.112, p = 0.911). Taken
together, these results provide converging evidence for contri-
butions of representational goal and cue type on the amount
of effort and detail participants invest when producing their
drawings.

Differences in category evidence between groups Based
on Study 1, we predicted that there would be some differ-
ences in the amount of category evidence contained by draw-
ings from each condition, but it was not yet clear whether
differences would be primarily driven by cue type, goal, or
both. As in the previous section, we used nested model com-
parisons to identify the best-performing model specification,
which included fixed effects for cue type, goal, their inter-
action, as well as self-reported drawing skill, with random
intercepts for participants and category. Using this model,
we found a main effect of cue type (photo: 1.72, label: 2.90;
b = 0.554, t = 2.24, p = 0.0256), such that label-cued draw-
ings were actually more classifiable than those cued by a
photo, diverging from the results we obtained in Study 1
(Fig. 5C). Moreover, we found a main effect of represen-
tational goal (exemplar: 1.72, category: 2.89, b = −1.84,
t = −7.43, p = 7.64e−13), such that drawings intended to
convey a category were more recognizable than those in-
tended to portray a specific exemplar. The interaction be-
tween cue type and goal was also reliable (b = 1.27, t = 3.63,
p = 3.24e−04), reflecting a larger effect of goal within the
photo-cue condition. Finally, we observed that self-reported
drawing skill had a small positive effect on drawing recog-

nizability (b = 0.153, t = 2.46, p = 0.0145). Together, these
findings provide support for the hypothesis that drawings in-
tended to portray a specific exemplar, especially one that was
recently seen, do not contain the same semantic information
as drawings intended to communicate about a basic-level cat-
egory. Specifically, the additional detail that these exemplar
drawings contain not only fails to enhance their recognizabil-
ity but if anything, reduces their ability to evoke the cued cat-
egory.

Effect of photo typicality on category evidence How
might these results be reconciled with those obtained in Study
1? One of the most salient differences between the photos
used in each study was how prototypical they were judged
to be: while the 36 photos used in Study 1 were all maxi-
mally prototypical, the 1024 photos used in this experiment
exhibited substantial and realistic variability in their visual
properties (e.g., viewpoint, lighting, clutter, occlusion, size),
such that none of these photos were nearly as canonical in
appearance as the cues used in Study 1.

Thus one plausible hypothesis is that the typicality of the
photo cue may modulate how much category-diagnostic in-
formation participants include in their drawings, such that
being cued with a less typical exemplar leads to less rec-
ognizable drawings while being cued with a more typical
exemplar leads to more recognizable drawings, at least at
the basic level. To evaluate this hypothesis, we fit a linear
mixed-effects model predicting category evidence for photo-
cue drawings only, including fixed effects for typicality, goal,
their interaction, and subjective skill, as well as random in-
tercepts for participants, category, and item (i.e., the specific
photo).

In support of this hypothesis, we found that the photo-
cue typicality was positively related to the amount of cate-
gory evidence contained in participants’ drawings (b= 0.624,
t = 3.45, p = 5.81e−04; Fig. 5E). Moreover, we found an
interaction between the photo-cue typicality and representa-



tional goals (b = 0.747, t = 3.55, p = 3.94e−04), indicat-
ing that the positive relationship between photo-cue typical-
ity and category evidence was stronger when participants in-
tended to draw that particular exemplar.

Estimating variability between drawings The fact that
the additional detail participants had included in photo-cue
exemplar drawings did not make them more recognizable at
the category level raises the question: what are the conse-
quences of including this extra information on the semantic
properties of these drawings? Perhaps these drawings are
characterized by a greater degree of exemplar-level discrim-
inability, such that they are easier to tell apart from one an-
other, even if they are not as easy to identify at the basic level
as their label-cued category drawing counterparts.

To explore this possibility, we conducted an exploratory
analysis of how distinguishable drawings within a given cat-
egory were, for each condition. Insofar as drawings that are
intended to communicate about a concrete, specific exemplar
are indeed more discriminable, we would predict the visual
variability among drawings to be larger for photo-cued exem-
plar drawings than for category drawings. To test this pre-
diction, we used Euclidean distance between feature vectors
to compute the variance over the set of feature vectors from
each category, separately for each condition.

We found that indeed feature variability was greater over-
all for photo-cued drawings than for label-cued drawings
(photo: 885, label: 819, b = 65.8, t =−3.98, p = 1.17e−04;
Fig. 5D). Moreover, feature variability was also greater for
exemplar drawings than category drawings (exemplar: 893,
category: 810, b= 83.3, t = 9.15, p= 1.43e−15). Finally, we
also found a reliable interaction between cue type and goal,
such that the gap in feature variability for exemplar vs. cat-
egory drawings was larger for the photo-cue condition than
in the label-cue condition (b = 41.3, t =−2.57, p = 0.0114).
Taken together, these results provide support for the notion
that drawings that are intended to convey specific, concrete
meanings are also more discriminable from one another than
drawings intended to convey more abstract, categorical mean-
ings.

Discussion
In this paper, we investigated the cognitive and task con-
straints that underlie our ability to produce drawings of object
concepts at different levels of abstraction. This paper reports
the results of both a smaller-scale exploratory study and a
larger-scale follow-up study that evaluated the impact of im-
mediate sensory inputs and representational goals on people’s
ability to include semantically relevant information about cat-
egory membership in the drawings they produced. Data from
Study 1 initially suggested that concurrent visual access to a
photograph of an object helped people include more category-
diagnostic information in their drawing than they otherwise
would. However, data from Study 2, which was both more
highly-powered and better-controlled, provided a more nu-
anced picture of how sensory information influences the se-

mantic information contained in the resulting drawing: more
typical photos tend to elicit more recognizable drawings than
less typical ones. Moreover, we found that photo-cued draw-
ings that were intended to depict that exemplar were among
the least recognizable (at the category level), suggesting a dis-
sociation between how drawings communicate more abstract
vs. more specific meanings.

Here our analyses assume that using features extracted by a
convolutional neural network provides a good approximation
to human sketch recognition, consistent with prior work (Fan
et al., 2018). However, in ongoing work, we intend to directly
validate this assumption in the current dataset by also obtain-
ing human sketch recognition judgments. Another limitation
of our current model-based analyses is that the architecture
we used is optimized for capturing category-level informa-
tion but not as well suited to representing fine-grained visual
differences between exemplars. Thus future work seeking
to more fully characterize semantic information in drawings
may benefit from using architectures trained to resolve such
fine-grained distinctions via techniques such as instance dis-
crimination (Wu et al., 2018; Zhuang et al., 2021).

In this work, our study asks participants to draw real-world
objects, which we assume to be strongly dependent on pre-
existing knowledge. Another promising direction for future
research is to use novel objects without pre-existing associa-
tions to gain further insight into how people draw what they
perceive even in the absence of verbalizable, semantic knowl-
edge. More broadly, our findings highlight the value of using
such open-ended production tasks to gain insight into the con-
tent and structure of conceptual knowledge.
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